
THE 1-FACTORS OF ORIENTED GRAPHS

W. T. TUTTE

1. Introduction. A graph G consists of a set 7 of elements called

vertices together with a set E of elements called edges, the two sets

having no element in common. With each edge there are associated

either one or two vertices called its ends.

In this paper we consider only graphs in which each edge has two

distinct ends. We call such a graph oriented if one end of each edge is

distinguished as the positive and the other as the negative end. If x

is the positive end and y the negative end of an edge A we say that x

is joined to y by A or that y is joined from x by A. We say also that A

is a join from x to y.

An oriented graph G is finite if both 7 and £ are finite, and is in-

finite otherwise.

If G is oriented and xEVwe denote by d\x) and d"ix) the cardinals

of, the sets of edges of G having x as positive and negative end re-

spectively. We call G simple if d'ix)=d"ix) for each xEV. An ori-

ented graph is regular of degree d if d\x) = d"ix) ==d for each xE V.

An oriented graph 77 is a subgraph of the oriented graph G if the

vertices and edges of 77 are vertices and edges respectively of G and

if each edge of 77 has the same positive end and the same negative

end in 77 as in G.1 If in addition each vertex of G is a vertex of 77,

then 77 is a spanning subgraph of G. If 5Ç 7 there is a subgraph of

G whose vertices are the members of 5 and whose edges are those

members of E which have both their ends in 5. We denote this sub-

graph by G[S]. We find it convenient to write Gs for the graph

G[V-S].
If n is any positive integer we define an n-factor of an oriented

graph G as a spanning subgraph of G which is regular of degree n.

In this paper we obtain a necessary and sufficient condition that a

given locally finite oriented graph shall have a 1-factor. By saying

that G is locally finite we mean that d'ix) and d"ix) are finite for

each xEV. The theory is closely analogous to that for unoriented

graphs given in [4] and [5].

2. Paths and oriented paths. Let G be any oriented graph.

A path in G is a sequence

Received by the editors April 2, 1953.
1 For an unoriented graph G we define a subgraph if as a graph whose vertices and

edges are vertices and edges respectively of G and in which each edge has the same

ends as in G.
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(2.1) P = (vo, eu vi, e2, ■ ■ ■ )

in which the terms are alternately vertices »< of G and edges e¡ of G,

and which satisfies the condition that z>,-_i and i>,- are the two ends of a

for each relevant i. It is not required that all the terms of P shall

represent distinct edges or vertices of G. If they do we say that P is

simple. The vertex vo is the origin of P.

The sequence P may be infinite. If not we postulate as part of the

definition of a path that it terminates with a vertex v„. We call vn the

terminus of P and say that P is a path from vo to vn. The integer n is

the length of the finite path. We admit the case in which P has only

one term, v0. In this case we call P a degenerate path.

If the terms of a finite path P represent distinct edges and vertices

of G except that the terminus is the same vertex as the origin, we

say P is circular.

A path P represented by (2.1) is a direct oriented path in G if t\_i

is the positive and v¡ the negative end of c,-, for each term d. It is a

reverse oriented path if v¿_i is the negative and »,- the positive end of

e,-, for each term e¿.

A subset S oí F is independent in G if there is no nondegenerate

finite direct oriented path whose origin and terminus are elements of

S. If in addition there is no pair of infinite simple oriented paths in G,

one direct and the other reverse, such that the origins of both paths

belong to S, we say that 5 is strictly independent in G. For a finite

G the terms independent and strictly independent are synonymous.

We shall prove the following

Theorem. A locally finite oriented graph G has no i-factor if and

only if there exist disjoint finite sets S and T of vertices of G such that

T is strictly independent in Gs and a(S) <a(T).

(We denote the number of elements of a finite set U by ct(U).)

We define connection in G by means of the unoriented paths, just

as for an unoriented graph. Vertices x and y in G are connected in G

if there is a finite path in G from x to y. The relation of being con-

nected in G is easily seen to be an equivalence relation. It partitions

the set of vertices of G into disjoint equivalence classes. If W is one

of these equivalence classes we call G[W] a component of G. The

graph G is connected if it has only one component (or is null, that is

has no edges and no vertices). Clearly the components of G are non-

null connected graphs and two vertices of G are connected in G if

and only if they are vertices of the same component of G.

If G is finite or locally finite there are only a finite number of paths
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in G with a given origin and a given finite length n. As a consequence

of this we have

(2.2) In any connected locally finite graph the set of vertices and the

set of edges are denumerable.

3. 1-factors and determinants. In this section we at first take G to

be a finite oriented graph. We suppose its vertices enumerated as

ax, a2, • ■ • , am, if 7 is non-null. We then associate with G an mXm

matrix K~iG) = {k,j}. We put ¿,y=0 if i=j or if there is no edge of G

having a, as its positive end and a¡ as its negative end. We regard the

remaining elements ki¡ of KiG) as independent indeterminates over

the field of rational numbers.

The determinant | KiG) \ is given by

(3.1) \K(G)\ = £«*!-**■ • • km,

where (a/3 ■ ■ ■ p) runs through the permutations of the integers 1 to

m, and e is +1 or — 1 according as the permutation (a/3 ■ • • p) is

even or odd.

If tkXak2ß • ■ ■ kmii is a nonzero term of the sum (3.1), then for each

kij in this product we can select an edge of G having a, as positive end

and a¡ as negative end and so construct a 1-factor of G. Conversely for

each 1-factor of G there is a nonzero term in the expansion of KiG).

We call G prime if it has no 1-factor. We have shown that if G is

non-null then

(3.2) G is prime if and only if \ KiG) \ =0.
For a null graph N it is convenient to say that N is its own 1-factor

and that | KiN) | = 1. Then (3.2) holds for all graphs.

Two distinct vertices a, and a, of G are joined factorially from a, to a,

if there is a subgraph H oí G for which d'(a¿)=0, d'(a*) = l if kj¿i,

d"iaj) = 0, and d"(at) = 1 if k 5¿j. We call H a factorial join from ai to a,-.

If Ka denotes the cofactor of the element ki¡ of K(G), then in the

case i 7ej the factorial joins from a< to a, are associated with the non-

zero terms in the expansion of Ki¡ just as the 1-factors of G are asso-

ciated with the nonzero terms in the expansion of | K(G) \. Thus we

have

(3.3) Let ai and a¡ be distinct vertices of G. Then there is a factorial

join from ai to a¡ in G if and only if K^^O.

By the theory of determinants the cofactors K{j satisfy the equa-

tion

(3.4) Kp,,KTi — Kv„Kqr = 0

whenever |.ty(G)| =0, that is for any prime finite oriented graph G.

(See, for example, [l, p. 98].)
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A vertex ai of G is out-singular if there is no factorial join from at to

any other vertex of G, and in-singular if there is no factorial join

from any other vertex of G to a¿. The following proposition is an

immediate consequence of (3.2) and (3.4).

(3.5) Let at and a¡ be distinct vertices of G such that there is no fac-

torial join from ai to a¡. Then either a< is out-singular or a¡ is in-singular.

(3.6) Let G be a locally finite oriented graph having disjoint finite

sets S and T of vertices such that T is strictly independent in Gs and

a(T)>a(S). Then G has no i-factor.

Proof. Assume that G has a 1-factor F. Then if x is any element of

T we can construct a direct oriented path P(x) in G according to the

following rules:

(i) P(x) is nondegenerate and its first edge Xi is the edge of F hav-

ing x as its positive end.

(ii) If the construction has been carried as far as the ith edge Xi,

we take the negative end Xi of Xi as the (t + l)th vertex.

(iii) Suppose the construction has been carried as far as the (i-\- l)th

vertex Xi. Then we consider the construction completed if x¿£.S.

Otherwise we take as (i + l)th edge of P(x) the edge of F having Xi

as its positive end.

We note that P(x) either has an element of 5 as terminus or is an

infinite path in Gs- In the former case no term of P(x) other than the

last is an element of S.

Since T is independent in Gs no one of the vertices xu x2, ■ • ■ is an

element of T. It follows that P(x) is a simple path. For if not, there

are i,j such that 1 ̂ ¡i<j; Xí = Xj; Xít^Xj. Then Xi and X} are distinct

edges of F with the same negative end, contrary to the definition of a

1-factor.

If x and y are distinct elements of T then P(x) and P(y) have no

common vertex. For if they have let x, be the first term of P(x) which

is a vertex of P(y) and let y¡ be one occurrence of that vertex in

P(y). Then the edges which immediately precede Xi and y, in P(x)

and P(y) respectively are distinct edges of F with the same negative

end, contrary to the definition of a 1-factor.

Let « be the number of elements x of T such that P(x) is infinite.

The remaining a(T)—n elements x of T define finite paths P(x)

having a(T)—n distinct elements of 5 as termini. Hence a(S)^a(T)

-n. Buta(5)<a(F). Hence »fcl.
We deduce that there is an infinite direct oriented simple path in

Gs whose origin is an element of T. If we apply this result to the

graph obtained from G by reversing the orientation of every edge we

find that there is an infinite reverse oriented simple path in Gs whose
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origin is an element of T. Hence T is not strictly independent in Gs,

contrary to hypothesis.

We conclude that G can have no 1-factor.

4. Hyperprime oriented graphs.

An oriented graph G is hyperprime if it is non-null and for each

ordered pair {a,-, a,} of distinct vertices, a,- is joined to a¡ in G if and

only if there is no factorial join from a< to a, in G.

A hyperprime graph 77 is necessarily prime. For if a factor F oí H

included án edge joining a,- to a¡, there would be both a join and a

factorial join from o,- to a¡ in 77.

(4.1) 7/ G is any prime finite oriented graph we can construct a

hyperprime finite oriented graph 77 which contains G as a spanning

subgraph.

Proof. Suppose a,- and a¡ are vertices of G (îVj) such that there is

no join and no factorial join from a< to a¡ in G. Then we construct an

oriented graph Gx by adjoining to G a new edge A with positive end

a,- and negative end a¡. The graph Gx is prime. For suppose it has a

factor F. Then if A is not an edge of F the graph G has F as a factor,

contrary to hypothesis, and if A is an edge of F we obtain a factorial

join from a¿ to a, in G from F by deleting the edge A.

If ap and aq are vertices of Gx such that there is no join and no fac-

torial join from aP to aq in Gi, we repeat the process, and so on. Since

G is finite we obtain eventually a prime graph 77 which has G as a

spanning subgraph and which has the property that for any two dis-

tinct vertices a, and o, there is either a join or a factorial join from

a¿ to a¡.

If an edge A oí H joins a< to a¡ there can be no factorial join from

ai to a¡ in 77. For by adjoining A to such a factorial join we would

obtain a 1-factor of 77.

We conclude that, since a prime graph is non-null, 77 is a hyper-

prime graph having the required properties.

Let 77 be any hyperprime finite oriented graph.

We partition the vertices of 77 into four disjoint sets A, B, C, and D

as follows. A is the set of all vertices of 77 which are out-singular but

not in-singular, B is the set of those vertices which are in-singular but

not out-singular, C is the set of those vertices which are both in-

singular and out-singular, and D is the set of all other vertices of 77.

We summarize these definitions in the following diagram.

Out-singular Not out-singular

In-singular

Not in-singular
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(4.2) Each element of AUC is joined to every other vertex of H and

each element of B\JC is joined from every other vertex of H.

Since H is hyperprime this follows from the definitions of in-singu-

lar and out-singular vertices.

(4.3) No member of AKJD is joined from any member of B\JD.

Proof. Suppose a^BUD and a¡CzAUD, ai and a¡ being distinct.

Assume that a,- is joined to a¡ in H. There is no factorial join from a<

to a¡ since H is hyperprime. Hence either ct< is out-singular or a¡ is

in-singular by (3.5), contrary to the definitions of these vertices.

(4.4) The set D is independent in Hc.

Proof. If the origin of a nondegenerate direct oriented path in He

belongs to D, the second vertex and all subsequent vertices must

belong to B by (4.3). Hence if the path is finite its terminus cannot

be an element of D. The theorem follows.

(4.5) There exist disjoint sets S and T of vertices of H such that T is

independent in Hs and a(T)>a(S).

Proof. If a(D)>a(C) the theorem is true, by (4.4). We assume

therefore that a(D) ^a(C).

Let Q be any subset of C such that a(Ç)=a(Z>). If D^O we

enumerate the elements of D as ¿i, d2, • ■ • , dk, and the elements of

Q as qi, q2, • ■ • , g*. For each pair {¿,-, g,} let X{ be a pair of edges of

H, one joining di to g< and the other joining g,- to a*,-. Such a pair

exists, by (4.2).

Suppose first that a(C) =a(Z>) =0. Then A and B are not both null;

otherwise H would be null, contrary to its definition. If aiA) = 1 or

aiB) = 1 then A or B is independent in He by (4.3), and so the theo-

rem is true. If neither A nor B has just one element, then for each non-

null set A or B we can construct a nondegenerate direct oriented

circular path PA or PB respectively whose vertices are the elements of

A or B respectively. This follows from (4.2). The edges of the result-

ing path or paths then define a 1-factor of H, contrary to the defini-

tion of H.

Suppose next that a(C) =«(.0)^0. Then we can find a nonde-

generate direct oriented circular path P in H in which the vertices

are, in order, gi, the vertices of C — Q if any, the vertices of A if any,

di, the vertices of B if any, and then gi again. Let X be the set of

edges of P. Clearly the union of X and those sets Xi for which i> 1

is the set of edges of a 1-factor of H, contrary to the definition of H.

In the remaining case we have a(C) >a(Z>). Let x be any element

of C — Q. We construct a direct oriented circular path P in H accord-

ing to the following rule. We form its sequence of vertices by taking

first x, then the other vertices of C—Q if any, then the vertex gi if

D?¿0, then the vertices of A if any, then the vertex di if D?¿0, then
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the vertices of B if any, and then x again except that x is not to be

repeated if it is the only vertex to occur in the sequence. By (4.2) we

can construct a direct oriented circular path P with this sequence of

vertices. Let its set of edges be X. If P is nondegenerate, the union of

X and those sets Xi for which i>\ is the set of edges of a 1-factor of

77, contrary to the definition of 77.

We deduce that P is degenerate. This implies A =B=D=0 and

aiC) = 1. Then C is independent in 77^ and so the theorem is true.

5. 1-factors of finite oriented graphs.

(5.1) A finite oriented graph G has no \-factor if and only if there

exist disjoint sets S and T of vertices of G such that T is independent in

G s and aiS) <a(T).

Proof. Suppose there are sets 5 and T oí vertices of G with these

two properties. Since G is finite the sets 5 and T are finite and T is

strictly independent in Gs- Hence G has no 1-factor, by (3.6).

Conversely suppose G has no 1-factor. By (4.1) we can construct

a hyperprime finite oriented graph 77 which contains G as a spanning

subgraph. By (4.5) there are disjoint sets 5 and T of vertices of 77,

that is vertices of G, such that a(T)>a(S) and T is independent in

77s. But Gs is a spanning subgraph of 77s- Hence T must be inde-

pendent in Gs.

6. 1-factors of locally finite oriented graphs. Let G be any infinite

but locally finite oriented graph. Let E be its set of edges and 7 its

set of vertices.

A spanning subgraph 77 of G is factor-like on a subset Z oí V ii

d'(z) =d"(z) = 1 in 77 for each zEZ.

(6.1) Let Z be any finite subset of V. Then either there exists a span-

ning subgraph H of G which is factor-like on Z or there exist finite sub-

sets S and T of V, T being a subset of Z, such that T is strictly inde-

pendent in Gs and a(S) <a(T).

Proof. Let Q be the set of all elements of V—Z joined to or from

elements of Z by edges of G. Let R be any finite subset of 7— (QVJZ)

such that a(QVJR) ^a(Z) + 2.

We construct a graph K from G [QKJRVJZ] by adjoining a new edge

joining a to b for each ordered pair {a, b} of distinct elements of Q\JR.

If K has a 1-factor F let U be the set of those edges of F which

have an element of Z as one end. The spanning subgraph of G whose

edges are the elements of U is factor-like on Z.

If K has no 1-factor there are disjoint subsets 5 and T of vertices

of K such that T is independent in Ks and a(S) <a(T), by (5.1).



•9531 THE i-FACTORS OF ORIENTED GRAPHS 929

Suppose T includes an element x of QUR. Since T is independent

in Ks it follows from the construction for K that iQ\JR) — {x} QS.

Hence aiQ^JR) ga(S) + l ^a(r). But we have also aiQ\JR) ta(Z)

+ 2=;a(r) + l. From this contradiction we conclude that TQZ.

Suppose that T is not strictly independent in Gs- Since T is inde-

pendent in Ks it follows that there exist direct oriented simple paths

Pi and P2 in Gs, the first from an element of T to an element a of Q

and the second from another element b of Q to an element of T, each

path having only one term which is in Q^JR. But a is joined to

b by an edge of K. It follows that there is a finite nondegenerate direct

oriented path in Ks whose origin and terminus are elements of T.

This is impossible since T is independent in Ks.

The theorem follows.

(6.2) A locally finite oriented graph G has no i-factor if and only if

there exist disjoint finite sets S and T of vertices of G such that T is

strictly independent in G s and a (5) <a( T).

Proof. Suppose there are sets 5 and T of vertices of G with these

properties. Then G has no 1-factor, by (3.6).

Conversely suppose G has no 1-factor.

If G is finite the theorem holds, by (5.1). We suppose therefore

that G is infinite. We begin by considering the case in which G is

infinite and connected. The sets E and V of edges and vertices re-

spectively of G are then denumerable, by (2.2).

Let the vertices of G be enumerated as (ai, a2, a%, ■ ■ ■ ). For each

positive integer n we denote the set {ai, a2, • • • , an\ by Z„. Assume

that for each n there is a spanning subgraph Hn of G which is factor-

like on Zn.

Let the edges of G be enumerated as (^4i, A2, A%, ■ • ■). Write

fim, n) = l if Am is an edge of Hn, and fim, n)=0 otherwise. If Si

denotes the infinite sequence (i?i, H2, Hi, • ■ ■ ) there must be an in-

finite subsequence S2 of Si such that/(l, n) has the same value,/(l)

say, for each n such that i/n£S2. Further there must be an infinite

subsequence S3 of S2 such that/(2, n) has the same value,/(2) say,

for each n such that Hn£Ss, and so on. Accordingly there is an in-

finite strictly increasing sequence («i, n2, n3, • ■ ■ ) of positive integers

such that
lim fim, ni) = fim)
I—*a0

for each positive integer m. (We may define w, as the first suffix in

Sy exceeding »>_i.) Let F be the spanning subgraph of G whose edges

are those edges Am of G for which fim) = 1. Then F is factor-like on
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each of the sets Z» and is therefore a 1-factor of G, contrary to as-

sumption.

We conclude that there is a positive integer q such that no spanning

subgraph of G is factor-like on Zq. An application of (6.1) completes

the proof for the case in which G is connected.

In the remaining case G is not connected. If each component of G

has a 1-factor, then G has a 1-factor, the union of one 1-factor from

each component. We deduce that some component 77 of G has no

1-factor. By the preceding result there are disjoint finite sets 5 and

T of vertices of 77 such that T is strictly independent in 77s, and

a(S)<a(T). But if T is strictly independent in 77s it is necessarily

strictly independent in Gs- This completes the proof of the theorem.

7. An application to unoriented graphs. The degree of a vertex a

in an unoriented graph G is the number of edges of G having a as

an end. G is locally finite if each vertex of G has a finite degree.

A locally finite graph G is regular of degree n if all its vertices have the

same degree n.

Let us define a Q-factor oí an unoriented graph G as a subgraph of

G including all the vertices of G in which each component is regular

of degree 1 or regular of degree 2. A component of the Q-iactor which

is regular of degree 1 must have just one edge and just two vertices.

(7.1) A locally finite unoriented graph G has no Q-f actor if and only

if there are disjoint finite sets S and T of vertices of G such that a(S) <a(T)

and each edge of G which has one end in T has the other end in S.

Proof. If G has an edge A joining two vertices a and b we replace

it by two oriented edges, one joining ato A and the other joining b

to a. Making this substitution for each edge we convert G into a

locally finite oriented graph 77. Clearly G has a Q-factor if and only if

77 has a 1-factor. Hence it follows from (6.2) and the construction

for 77 that (7.1) is true.

An unoriented graph G is even if its set of vertices can be parti-

tioned into two disjoint subsets Vx and 72 such that each edge has

one end in Vx and the other in 72. If an even graph G has a Q-factor

Q then it has a Q-i actor Q' which is regular of degree 1. We may de-

rive a Q' from Q by suppressing alternate edges in each component

of Q which is regular of degree 2. The Q-i actor Q' is a 1-factor of G in

the sense of the theory of unoriented graphs. Accordingly for an even

graph (7.1) is equivalent to the theorem of P. Hall and R. Rado on

the factorization of even graphs [2 ; 3 ].
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ON SEMI-SIMPLE LIE ALGEBRAS

JEAN DIEUDONNÉ

1. The primary purpose of this note is to give a new proof for the

sufficiency of E. Cartan's criterion for semi-simplicity of a Lie alge-

bra, namely that its Killing form be nondegenerate. My proof differs

from the usual ones in the fact that it uses no result from the theory

of nilpotent Lie algebras, and is valid for a base field of arbitrary char-

acteristic.

2. Let g be a Lie algebra over a field K, having finite dimension

n > 0. A symmetric bilinear form <b(X, Y) over 8 X 8 is called invariant

if <b([X, Y], Z)=<p(X, [Y, Z]) identically. This is the case for the

Killing form Tr(ad(X) ad(F)), where ad(X) is the endomorphism

F—»[.Sf, Y] of the vector space 8- It is well known that when the Kill-

ing form of a is nondegenerate, 8 does not contain any abelian ideal

9e (0) (one has only to remark that if a is such an ideal, and A(Ea,

then (ad(.4) ad(X))2 = 0 for any XÇ.Q, by an elementary computa-

tion, hence Tr(ad(4) ad(X))=0 for all XGb)- E. Cartan's criteri-

on is therefore a consequence of the more general result:1

Theorem. // the Lie algebra 8 does not contain any abelian ideal

9a (0), and if there exists a symmetric invariant nondegenerate bilinear

form <b(X, Y) on 8X8> then 8 is a direct sum of simple nonabelian sub-

algebras.

Let m be a minimal ideal in a; as [m, m] is an ideal of 8, contained

in m, [m, m] is either (0) or m; but the first case is excluded, since

Received by the editors April 11, 1953.
1 I am indebted to N. Jacobson for calling my attention to this generalization, as

well as for simplifying my original proof.


