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1. Introduction. A polynomial is said to be self-inversive if its

zeros are symmetric in the unit circle C: \z\ =1. Let E be an arbitrary

subset of the finite complex plane Z, and let 9i(/, E) and ty(f, E) de-

note respectively the total multiplicity of the zeros and poles in E of

a function/. Let 0(/, E) denote the number of distinct poles of/ in

E, and let /' denote the derivative of /. In this notation, Cohn's

Theorem1 states that, if / is a self-inversive polynomial, then

ft(/', \z\ > 1) = 9t(/, | as | > 1).

The theorem of Lucas [3, p. 14] states that if g is any polynomial

for which 3l(g, \z\ >1)=0, then ft(g', \z\ >1)=0. A result (Bdcher's
Theorem)2 due to Walsh states, in effect, that if 0 is a rational func-

tion for which $R(0, \z\ >1) = $(0, \z\ ^1)=0, then

5R(*', |*| £ 1) = Wf>, |*| Sl)-1,

provided <£ = k/K with degree X g degree fc.

These three theorems are special cases of the following, which is

our principal result.

Theorem 1. Let <j> = k/K be a rational function in which the degree of

the polynomial k is greater than that of the polynomial K. Let k =fg and

K = FG where f, g, F, G are polynomials, f and F are self-inversive, and

W(g, |*| >l) = yi(G, \z\ <1)=0. Then

(1.1)       3K*', \z\ > 1) =3tf>, \z\ > 1)+Q(«, |z| ^ 1).

Corollary 1.

SR(*', 111 S 1) - 9l(*. | * | g 1) +Q(«, | z | < 1) - 1.

The proof of Theorem 1, given in §3, is simple in principle though

slightly complicated in detail owing to the possible presence of poles

on C. Lemma 1 shows that the only zeros of <f>' on C are the multiple

zeros there of <t>. We may therefore vary 0 continuously without
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1 See [2 ]. A simpler proof of this theorem was given in [l ]. Another, [6], was pub-

lished since the announcement of the present paper.

2 See [4, pp. 97-99]. This book gives a number of other interesting results on the

zeros of self-inversive polynomials, particularly on pp. 52-55, 132-135, 159-163.
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changing yi((j>', \z\ <1) —^(0', \z\ <1) until we arrive at a rational

function for which this number may be counted. If applied to the

case when i£ = g=l, this method would yield a new and simpler

proof of Cohn's theorem.

2. Three lemmas.

Lemma 1. Under the hypotheses of Theorem 1, <j>'(t) =0 for t on C if

and only if t is a multiple zero of <f>(z).

Proof. Without loss of generality, we may assume that t = \. If

0(1)^0, then 0'(1)=O would imply

o = *'(i)/*(i) = [/'(i)//(i)] + k'(i)/«(i)]

(2'1} - [F'W/F(1)] - [G'(l)/G(l)].

Let the zeros of/, g, F, G, be denoted by a,-, bj, A,-, Bj, respectively,

and for any complex number z let z* denote (1 — s)_1. Then u, v, U, V,

defined by

m M

mu = /'(1)//(1) = £ a?, MU = F'(l)/F(l) = £ A*,
i i

nv = g'(l)/g(l) = E b*, NV = G'(l)/G(l) = E B^
i i

where m, n, M, N denote the degrees of /, g, F, G, are the centroids

of the a*, bf, A*, and B* respectively. Since w=(l— z)_1 maps the

closed interior of C upon the half-plane Re (w) S? 1/2 and preserves

symmetry in C, we have

Re O) = Re (U) = 1/2,        Re (v) ^ 1/2,        Re (V) ^ 1/2;

Re [0'(l)/0(l)j = Re [mu + nv - MU - NV]

^ O + n - M - .V)/2 > 0.

As this contradicts (2.1), <£'(1) =0 if and only if also 0(1) =0.

The following generalization of Rouche's Theorem may be proved

by a method similar to that given in [5, p. 191-192] for the usual

Rouch£ Theorem. It will be convenient to write (91 — ̂ S)(/, E) in

place of 3i(f, E)-$(f, E).

Lemma 2. Let D be the interior domain of a simple closed rectifiable

curve k. Let f and g be regular in a domain containing the closure of D

except perhaps for poles in D. If | g(z) | < \f(z) | on k, then

W-WV+g.D) = OR - ?)(/, D).
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Proof. Let 7(X) = (2W)-1/,[/'(z)+Xg'(z)][/(z) +\g(z)]~Hz. Then

7(X) is a continuous function of X for 0 ^X ^ 1 and, since it takes only

integer values, we conclude that 7(1) =7(0).

Lemma 3. With D, nasin Lemma 2, let ^a(z) be a meromorphic func-

tion of zin D with no zeros on k for each a in AiO^a^l. If \pa(z) is a

continuous function of (a, z) for zElk, a(E.A, then

(9* - $)(*!, D) = (9i - $)(*„, D).

Proof. Use Lemma 2 and a simple covering argument with respect

to .4.

3. Proof of Theorem 1. If <j> has no zeros and no poles on C, set

*(*) = *n (* - «on (* - ft)n (^ - To-1]! (2 - s.-)-1

where |«»| <1, |j8,-| >1, |*y*| <1, |5,-| >l,<r = const. Let

^w = *n (* - *>««■) n (p* - ison (* - pTi)-1!! (p* - «*)-1-
Lemma 1 shows that 0P' has no zeros on C for O^p^l. Since, evi-

dently, <f>p is a continuous function of (z, p) for |z| =1, O^p^l, we

may apply Lemma 3 and conclude that

(31 - q$)(0i', |z| < I) = (9t - $)(0O', 111 < 1).

However, <po(z)=<Tz', where * = (9i - 50) (0, |z| <1). It follows that

(3.1)       (SR-$)(*', |*| <1) = (9t-$)(0, |z| < 1)- 1,

which yields (1.1) due to the relations

$(*', £) = ?(*, £) +O(0, E),

Z: \z | < w, 9J(^', Z) = 5ft(0, Z) +Q(0, Z) - 1.

If 0 = 0 or oo on C, we may write k = hih2, K =77i772, where

9t(*i, | z | ^ 1) = SKflT!, | 2 | ^ 1) = gj(A2, | z | = l)

= 9c(#s, |z| = 1) = 0,

and apply (3.1) and Lemma 3 to

$(p) = h1(pz)h2(z)/H1(z/p)Hi(z), P > 1.

We may complete the proof by choosing p sufficiently near 1.

Corollary 2. W&Zt <p defined as in Theorem 1, let ^ = 1/0. Then,

W, \z\ >1)=9W, |z| >1)+Q(1/*, |*| =l)+0(*. \z\ >1).

Corollary 3. 91(0', |z| >1) awtf* 9l(f', |z| >1) are /«/* unaltered if
<p is multiplied by a polynomial all of whose zeros are within C.
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