CRITICAL POINTS OF RATIONAL FUNCTIONS WITH
SELF-INVERSIVE POLYNOMIAL FACTORS

F. F. BONSALL AND MORRIS MARDEN

1. Introduction. A polynomial is said to be self-inversive if its
zeros are symmetric in the unit circle C: | z| =1. Let E be an arbitrary
subset of the finite complex plane Z, and let N(f, E) and B(f, E) de-
note respectively the total multiplicity of the zeros and poles in E of
a function f. Let Q(f, E) denote the number of distinct poles of f in
E, and let f’ denote the derivative of f. In this notation, Cohn’s
Theorem! states that, if f is a self-inversive polynomial, then

RN, 2] > 1) =N, 5] > D).

The theorem of Lucas [3, p. 14] states that if g is any polynomial
for which N(g, |z| >1) =0, then N(g’, |z| >1)=0. A result (Bécher's
Theorem)? due to Walsh states, in effect, that if ¢ is a rational func-
tion for which R(¢, |z| >1)=PB(#, |2| 1) =0, then

N, |z] = 1) =N |z] 1) —1,

provided ¢ =k/K with degree K < degree k.
These three theorems are special cases of the following, which is
our principal result.

THEOREM 1. Let ¢ =k /K be a rational function in which the degree of
the polynomial k is greater than that of the polynomial K. Let k=fg and
K = FG where f, g, F, G are polynomials, f and F are self-inversive, and
RN(g, |2| >1)=N(G, |z| <1)=0. Then

1.1 NG, 2] > 1) =N, |2] > 1) +Q0, |2] = D).
COROLLARY 1.
N, 2] 1) =N, |2] 1)+, 2] <1 - 1.

The proof of Theorem 1, given in §3, is simple in principle though
slightly complicated in detail owing to the possible presence of poles
on C. Lemma 1 shows that the only zeros of ¢’ on C are the multiple
zeros there of ¢. We may therefore vary ¢ continuously without
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1 See [2]. A simpler proof of this theorem was given in [1]. Another, [6], was pub-
lished since the announcement of the present paper.

2 See [4, pp. 97-99]. This book gives a number of other interesting results on the
zeros of self-inversive polynomials, particularly on pp. 52-55, 132-135, 159-163.
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changing N(¢’, |z| <1)—P(¢’, |z| <1) until we arrive at a rational
function for which this number may be counted. If applied to the
case when K=g=1, this method would yield a new and simpler
proof of Cohn’s theorem.

2. Three lemmas.

LeMMA 1. Under the hypotheses of Theorem 1, ¢'(t) =0 for t on C if
and only if t is a multiple zero of d(2).

Proor. Without loss of generality, we may assume that t=1. If
¢(1) 0, then ¢'(1) =0 would imply

0=¢'(1)/6(1) = [FW//(D] + [g1)/e(1)]
~ [FP/F] - [EW/6M)].

Let the zeros of f, g, F, G, be denoted by a;, b;, 4;, Bj, respectively,
and for any complex number z let 2* denote (1 —2)~'. Then«,9, U, V,
defined by

(2.1)

m M
mu = f'(1)/f(1) = 2 af, MU =FQ)/F(1) = 2 A},

= g(/gl) = 0¥, NV =G1)/G() = Y Bf,

where m, n, M, N denote the degrees of f, g, F, G, are the centroids
of the af, bf, A}, and B] respectively. Since w=(1—2)~! maps the
closed interior of C upon the half-plane Re (w)=1/2 and preserves
symmetry in C, we have

Re () = Re (U) = 1/2, Re (v) = 1/2, Re (V) = 1/2;
Re [¢'(1)/¢(1)] = Re [mu + nv — MU — NV]
>m+n— M- N)/2>0.
As this contradicts (2.1), ¢’(1) =0 if and only if also ¢(1) =0.
The following generalization of Rouché’s Theorem may be proved
by a method similar to that given in [5, p. 191-192] for the usual

Rouché Theorem. It will be convenient to write (t—%PB)(f, E) in
place of N(f, E)—PB(f, E).

LEMMA 2. Let D be the interior domain of a simple closed rectifiable
curve k. Let f and g be regular in a domain containing the closure of D
except perhaps for poles in D. If lg(z)l < | f(z)| on Kk, then

N-=B(+sD) == D).
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Proor. Let I(\)=(2m5)~'[,[f'(2) +Ag'(2) ] [f(8) +Ng(2) ]-'dz. Then
I(\) is a continuous function of A for 0 SN =1 and, since it takes only
integer values, we conclude that I(1)=1(0).

LeEMMA 3. With D, k as in Lemma 2, let Y.(2) be a meromorphic func-
tion of 2 in D with no zeros on k for eachain A: 0Sa=s1. If Ya(2) isa
continuous function of («, 2) for 2Ek, a EA, then

M = P)@u D) = N — B)¥o, D).

ProoF. Use Lemma 2 and a simple covering argument with respect
to A.

3. Proof of Theorem 1. If ¢ has no zeros and no poles on C, set
¢(2) = o]l ¢~ a)II z = )T G — v~ I (z — 8"
where |ai| <1, |Bi| >1, |7 <1, |8:] >1, o =const. Let
¢(2) = o] (z = pa) IT (o2 — ) I (2 — pv) ' IT (o2 — 8.

Lemma 1 shows that ¢, has no zeros on C for 0<p <1. Since, evi-
dently, ¢, is a continuous function of (z, p) for Izl =1,0=p=1, we
may apply Lemma 3 and conclude that

O — B, | 2] <1) =R —B)(oo, | 2] < ).
However, ¢o(2) =03, where t= (9t — PB) (¢, |z] <1). It follows that
GB.1) R=P)@, 2] <D =R=-P)o 2] <1) -1,
which yields (1.1) due to the relations

B, E) = B, E) +Q(9, B),
Z: |z < o, N, 2) =N, 2) +Q(¢, Z) — 1.
If =0 o0r «© on C, we may write k= hh,, K = H,H,, where
N(hy, | 3| # 1) = N(H,, | 2] %= 1) = N(ke, |z] =1)
=N(H,, |z] =1) =0,
and apply (3.1) and Lemma 3 to
®(p) = hi(pz) ho(z)/ H1(3/p) Ha(2), p> 1.
We may complete the proof by choosing p sufficiently near 1.

CoROLLARY 2. With ¢ defined as in Theorem 1, let y=1/¢. Then,
NWY', |z| >1)=RW, 3| >D+QUN, |2| =1)+QW, || >1).

COROLLARY 3. (¢, |z| >1) and R, |2| > 1) are left unaitered if
¢ is multiplied by a polynomial all of whose zeros are within C.
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