
ON A CLASS OF FUNCTIONS SCHLICHT IN THE UNIT CIRCLE

A. SCHILD

Introduction. Actual tests to determine whether a regular function

is schlicht in \z\ <1 lead usually to tedious calculations of consider-

able difficulty. In this paper a class of polynomials having \z\ =1

as radius of schlichtness is investigated, for which a rather simple

condition—both necessary and sufficient—in terms of the coefficients

is given. With the aid of this condition it is also possible to obtain

for this class of polynomials better results for certain quantities con-

nected with the conformal mapping of schlicht functions, such as:

bound of convexity (Rundungs Schranke), distance of the boundary

in the w-plane from w = 0, etc.

Let SP be the class of functions having \z\ =1 as radius of schlicht-

ness, and let fp(z) =z— ££L2 anzn, having all an real and non-negative

forw = 2, 3,4, "• • • , N,N^2. Then we have:

Theorem 1. A necessary and sufficient condition for /P(z)£5P is1

N

1 — £ nan = 0.
B=2

Proof. To show sufficiency, suppose there exist zi, z2, |zi|, \z2\

^p<l, such that/j,(zi) =fP(z2). Then we have:

N

0  = /p(Zl)   - fp(Zi)   =  Zl — Z2 — £ 0„(Zl — Z2)
n-2

= (zi — z2) < 1 — £ an(z"    + z\   z2 + ■ ■ ■ + z2   ) > .

But

N

1 - £ 0»(zi     + Zl   Z2 + • • • + z"   )
n=2

N N

^ 1 — £ nanpn~x > 1 — £ nan = 0
n=2 n—2

and therefore/p(zi) =fP(z2) implies Zi = z2. To show that the condition

is also necessary, we have: A necessary condition for a function to be
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1 The sufficiency of this condition is a well known result. It is proved here for the

sake of completeness.

115



116 A. SCHILD [February

schlicht in \z\ <1 is that/'(s)^0 for \z\ <1. But

AT AT N

I /,'(«) I =   1 - E n*nZn~l   2: 1 - £ „an | z I"-1 > 1 - E nan.
n—2 n—2 n=2

Now, suppose 1— En-2 «On<0, then there exists a real z = z<> such

that 1 - E»-a "o-aS""1 =/; (zo) = 0 since/; (0) = 1 and/,' (1) <0. There-

fore, we must have 1 — En-2 na„>Q. But if 1 — E»-2 nan>0 then we

would have schlichtness for \z\ =R>1. Hence the condition is neces-

sary.

Corollary. For functions fP(z) of class Sp we have ak^l/k, k

= 2,3, • • • , N.Ifam = l/m,thenfp(z)=z-(l/m)zm.

Theorem 2. If w=fp(z)Q;Sp, then the map of \z\ =1 cannot be a

convex region.

Proof. A necessary and sufficient condition that w=f(z) should

map \z\ =T into a convex region is Re {z/"(z)//'(z) + l} 2:0 for all

\z\ =1. For/p(z)G5p this condition becomes

N

1 — E n2anzn~l

„ »-2
Re-} > 0.

1 - E na^-1
n=2

Now, considering the numerator of this expression we notice that for

z = 0 its value is positive and for z = 1 its value is negative, since

1 — EnF-2 n<lan < 1 — IlH-i nan = 0. Therefore, there exists a real z = Zo

such that the numerator is equal to zero and will become and stay

negative in an interval between z = zo and z = 1, while the denominator

stays positive (by Theorem 1), and therefore

N -I

1 - E n2anzn~l

Re ■ -—-< 0 for zo < z ^ 1,

1   —   E »0nZn_1

n=2

which proves the theorem. However, we have:

Theorem 3. All w=fp(z) G5P map \ z\ ^ 1 into a region star-shaped

with respect to w = 0.

Proof. A necessary and sufficient condition for w=f(z) to map

|z| =1    into   a   star-shaped   region   with   respect   to   w = 0   is
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Re {zf'(z)/f(z)\ SO for all |s| SI. In our case

N

l - £ «0„z"-1

Re /£»}  . Re  ■-=!-    - Re fl - ±tAXmi       i-£«-        x   -'   f
n-2

where Ji = 0! and bn = nan+i+ £j£j &*an-*+i for w = 2, 3, 4, • • • . It

follows therefore by induction that all bn are positive. Therefore:

si- £ K = 0.
n-1

(Note: The last equality follows from the fact that the numerator

of Re {z/'(z)//(z)}=0forz=l.) But zf'(z)/f(z) is regular for \z\ £1,

and therefore Re {z/'(z)//(z)} is a harmonic function, which satisfies

Re {zf'(z)/f(z)} SO on |z| =1. But a harmonic function cannot

take a minimum "inside" and therefore Re {zf'(z)/f(z)\ SO for all

\z\ £1. This completes the proof.

Theorem 4. // w=/p(z)£5p awd a7* is a point in the w-plane such

that fp(z) ^d*, | z\ 5; 1, //ze« d* S1/2, i.e. /Ae circle \ w\ g 1/2 is always
covered by the map of the unit circle by fp(z) = SP.

Proof.

|/(««)| =\e»- £ o,e*-| SI- £ a„Sl- -J- £ ««„ = v •
n-2 n-2 2     n-2 2

This inequality is sharp, since for fp(z) =z — z2/2£5p we have

/(l) = l/2. We also note that if/p(z)£S„ is of degree k, then
d*£l-l/k since a2+a3+ • • • +0*S (1/*) ££.,na» = l/A.

Theorem 5. The bound of convexity of w=fp(z)(E.SP is 1/2, i.e.

z =r0£l/2 is always mapped into a convex curve, but not always

z  «r>l/2.

Proof. The bound of convexity is the least zero—in absolute value—

of Re {zf"(z)/f(z) +1} = Re {(1 - £*_2 »2a„z-i)/(l - £„"_, nanz^)}

■" 1 — £iT-i c„zM where all c„S0. By considerations similar to those of

Theorem 3, we find that the least zero will be a positive real num-
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ber   0<Zo<l.   We   must   have,   therefore,   a   z0   such   that    1
-E»-2«8O«Z0_1=0.

Suppose now z0<l/2; then 1- En-2 n2an(l/2)"-i<0. But

1 1 1
1 — 4<z2-9a3-• • • — N2aN-

2 4 2*-1

9 N2aN
= 1 — 2a2-a3-• > 1 — 2a2 — 3a3 — ■ • • — Na^ = 0

4 2N~l

which is a contradiction. The estimate is exact since for fp(z)=z

— z2/2 we have r0 = l/2.

Theorem 6. The circle \w\ ^3/8 is always covered by a convex region,

i.e. if d0 is the shortest distance from w = 0 to fp(r0iie), where r0 is the

bound of convexity, then d02:3/8.

Proof. d0= \f(neie)\ =\raea- E*-2 anrn0e™<>\ 2:r0- E*-2 aJl

= ro{l-E*-2 a„r?-1}2:ro{l-roEn-2a«}=''o{l-ro/2}. We know

by the previous theorem that r02:l/2. But r0{l— rQ/2} is strictly

increasing in l/2^r0<l, therefore

1 (        1/2)        3
do 2: — h-}  =— q.e.d.

2 I 2 ) 8

For the function/(z) =z — z2/2 this estimate is exact. By Theorems

4 and 6 we have

1/2 g d* < 1,        3/8 =" do < d*

and therefore obviously

do/d* > 3/8.

It has been conjectured that for all functions w=f(z) =z+ E"-2 a"z?>

regular and schlicht in the unit circle which map \z\ =1 into a star-

shaped region we have do/d*^2/3. (This lower bound for do/d* can-

not be improved since, for f(z) = z(l+z)-2, d* = l/4, <f0=l/6.) It is

possible to prove this conjecture for all f(z)£Sp.

Theorem 7. For allfP(z)E.Sp we have do/d* ^2/3.

Proof.

(1) <*o-   f'°f'P(z)dz2:Zofp(zo)
J 0
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since fp (z) is decreasing for 0^z^z0, Im z = 0. Also

d* =  f  f'P(z)dz =  f'" f'p(z)dz + f  f'p(z)dz = do + f  f'P(z)dz.

But for all fP(z)£Sp, f'p"(z)g-0 for 0=zgl, Im z = 0, i.e. /,'(«) is
convex upward in this interval and therefore the tangent to fp (z) at

(z0,/'(zo)) will lie entirely above the fp (z) curve. But at (z0, f'(z0))

we have zq/"(z0)//'(zo) +1 = 0, i.e./"(z0) = —/'(z0)/z0, i.e. the slope of the

tangent at (z0,/'(z0)) is = —/'(z0)/zo, and therefore the tangent will

intersect the Re z-axis at z = 2zo- Therefore J^JP (z)dz^ area of

the triangle formed by the three points:

(*o,/(*>)),        (zo, 0),        (2z0, 0),

i.e. J,Jp(z)dz-^Zofp(zo)/2. Thus d*^do+ZofP (z0)/2 and on account

of(D

d* g do + do/2 = 3 do/2,    i.e.    do/d* 2: 2/3.

It seems highly probable that, for fp(z)£Sp, we actually have

d0/d*^3/4, which could not be improved, since it is sharp for the

function fp(z) =z —z2/2.

Theorem 8. For the area of the map of \z\ ^ 1 by fp(z) G5P, we have

■k < A ^ 3x/2.

Proof. The left inequality is obvious, since A =tt{ 1 + Ef-2 nan\ •

To prove the right-hand side of the inequality, we have:

I N        2i ( N 1       \ I N      \
ir-!l   +    E    nar\    S= 1T<1   +    E   n-an(    =  7T<1   +    E anf

K n=2 / I n=2 « / V n-2       )

This is exact, since for/p(z) =z — z2/2, A =3ir/2.

Theorem 9. For the functions fp(z) of class SP we have the following

distortion theorem:

|z|-|z|2/2^|/P(z)| ^|z|+|z|2/2.

Proof. \f(z)\ = \z- ZL* o-s"| =§ |*| + El2 a„\z\»^\z\+\z\2
■Zl2dn^\z\+\z\2/2.

Similarly, |/p(z)| 2: \z\ - £*., an\z\ "2: |z| - |*|2 EI2 «n^|z|

-|z|2/2.
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Theorem 10. For the derivatives of functions fp(z) of class S:

l-|i| S|/,(s)| £1 + |*|.

These inequalities are sharp. They are attained by fp(z)=z — z2/2 at

z= +r, r real.

Temple University

A REMARK ON REVERSIBLE MATRICES

M. S. MACPHAIL

The matrix A = (ank) is called reversible if for each y = {yn} £ (c)

the equations y„= £t°-o ankxk (« = 0, 1, ■ • • ) have exactly one solu-

tion x= {xk}. In this case there exist [l; 4] constants ck, bkn with

£n j 6*7i | < °° for each k, such that

00

(1) xk = c* lim y„ + £ bknyn (k = 0, 1, • • • ).
n-»» n-0

It is further stated in [l, p. 50 ] that the ck are bounded. This is ques-

tioned in [4], where it is pointed out that if the ck were generally

bounded they would have to be almost all zero, but this remark does

not dispose of the matter, for it might conceivably be a true theorem

that for each reversible matrix the ck are almost all zero. (For row-

finite matrices, all ck vanish; [3].) The example given in [4, p. 47]

seems inconclusive. The purpose of this note is to show by a very

simple example that in fact the ck need not be bounded.

Consider the transformation

m co

y2m =   £ X2p, y2m+l  =  2_mX2m+l + £ x2p,

p=0 p—0

where m = 0, 1, • • • . For each y£(c) we have

x2m+i = 2m(y2m+1 - lim yn);
n

thus c2m+i— —2m is not bounded.

This has a bearing on a paper [2 ] in which the following theorem

is stated:
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