
ON THE COEFFICIENTS OF UNIVALENT LAURENT SERIES

ZEEV NEHARI AND BINYAMIN SCHWARZ1

While there exists a very extensive literature on the coefficients of

Taylor series which are univalent in the unit circle, little attention

seems to have been given to the corresponding problems for the coeffi-

cients of a Laurent series

OO

(1) /(*)   =     Z   «nZ", 0  < P  <  | Z|   <   1,

which is univalent for p < | z\ <1. Most of the simple devices used in

the treatment of univalent Taylor series cannot be profitably applied

to the series (1), mainly because even the most elementary trans-

formations of the series (1) affect its coefficients in a very complicated

manner. However, there exists an elementary technique which can

be applied to certain subclasses of (1) and can be made to yield sharp

results. We shall illustrate its use in two cases: (a) for the subclass R

of univalent series (1) which have real coefficients an\ (b) for the sub-

class 5 of functions (1) which map p < | z\ <1 onto a starlike domain

D with respect to the origin. By starlikeness is meant, as usual, that

the intersection of D and any rectilinear ray starting at the origin will

be connected; obviously, the origin cannot belong to D, since other-

wise D would be simply-connected.

It is clear that if f(z)(E.R, the sign of Im {/(z)} will be the same

throughout each of the half-rings Im {z}>0, p<|z| <1 and Im {z}

<0, p < | z\ <1, and that the sign will change if z crosses the real axis.

We shall normalize the functions of R by the requirement that

Im {/(z)} >0 if Im {z} >0; clearly, either /(z) or — /(z) will satisfy

this normalization.

With this definition, we shall have sin 0 Im {f(reie)} ^0 (p <r <1,

0^6^2ir) for any f(z)ER. It follows that

2   c iT
(2) 0^—1       Im {f(rew)} sin 0(1 + cos vff)d6,        v = 1, 2, • • • ,

whence, by (1),

0 g 2(fllr - a_xr~l) ± [(ff,+1r"+1 - a_,_1r-'-1) - (a.-ir-1 -fl_„+1r-+1)],
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and therefore

| av+1r'+1 — o-v-ir""-1 - (a,-^"-1 — ff_,+if-,,+1) | ^ 2(«ir - a^r'1).

Setting, without restricting generality, a0 = 0, and using complete in-

duction, we find that

(3) | anrn — a_nr~n [ g n{axr — a_if_1), n = 2, 3, • • • .

This inequality holds for every p <r < 1 and therefore, for reasons of

continuity, also for r =p, r = 1. It follows that

| an | (1 - p2n) = | an - a_„ + pn{a-np~n - anpn) \

^ | an - a_n | + p" | anp" - a_np-" |

g w(«i — a_i) + npn{axp — a_ip_1).

an is thus subject to the inequality

(4) \o*\£       n       [0l(l + p«+1) - fl_!(l + p"-1)],    « = 2, 3, ■ • • .
1 — pin

It will be observed that in the case of a Taylor series in the unit circle,

that is, for p=0, a_i = 0, (4) reduces to the well known inequality

| On |   ^««1.

To find the corresponding inequality for the coefficients of nega-

tive powers, we write

[ a_„(pn - p-») | = | p"(ff_„ - an) + (pnan - p-"0 |

g pn | a_n — an | + | pna„ — p-"a_n |

and again apply (3) for r = 1 and r =p. This leads to

(5) | G_n |   g        ^ [pai(l + p»->)   - p-lO-!(l + p"+1)],
1  — p2n

n = 2, 3, • • • .

We now turn to the question as to when we may have equality in

(4) and (5). Obviously, this can be the case only if there is equality in

(2) for r=p and r = l, since both (4) and (5) are based on these two

special cases of (2). Now the integrand in (2) is non-negative and

equality in (2) will therefore require that both Im \f(eie)} and

Im \f(peie) J are zero almost everywhere. This means that /(z) must

map p<|z| <1 onto the entire plane which is provided with two

slits, one finite and one infinite, along the real axis.

The map of this function shows that there must be either a double

pole at one of the points ±1, +p, or else two simple poles at two con-
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jugate points of \z\ =1 or \z\ =p. If it has a double pole at z=l,

the integrand of (2) will remain continuous for r = l (and, of course,

also for r=p) and the integrand may indeed be evaluated on the

boundary. The manipulations following (2) show that the question

whether or not this function will give equality in (4) and (5) depends

on the signs of the coefficients. This question can therefore not be

decided without actually constructing a function according to the

above specifications. It is easy to see that the function in question,

say/o(z), is essentially an elliptic function and, except for a trivial

transformation, it must be of the form

/o(z) = S>(logz; iir> logp),

where g? denotes the Weierstrassian elliptic function and iir, log p are

its half-periods. Except for an additive constant, /o(z) has the

Laurent expansion

"    np2nz-" "       nzn

^ /•« - £ z—Tn + £ -.—£ •
n=1   1 - p2n       n=i   1 - p2n

It is easily verified that for the coefficients of/0(z) we have equality

in (4) and (5). It can also be immediately confirmed that in the case

of functions/(z) for which Im {/(z)} <0 if Im {z}>0, (4) and (5)

remain correct if the right-hand sides of these inequalities are re-

placed by their negative values. Summing up our results, we have

the following theorem.

Theorem I. Let

00

f(Z)   =     £   ffnZ", 0   <   p   <  \Z\   <   1,
n=—oo

be regular and univalent in p < | z\ <1 and let the coefficients an be real.

Then

(7) \an   £-—   o,(l + p«+1) - o_!(l + p"-1)   ,
1 — p2n

n = ± 2, + 3, • ■ • .

This inequality is sharp for all values of n concerned, as shown by the

function (6) which satisfies all hypotheses.

Remark. In our proof, we only made use of the fact that Im {/(z)}

does not change its sign except when z crosses the real axis. As in a

similar case for Taylor series [l], our result will therefore also hold

for typically-real Laurent series, that is, series whose sums are real if,
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and only if, z is real.

It may also be worth commenting on the fact that both ai and a_i

appear in the bound (7) for o„. This is due to the circumstance that

the family of univalent functions in a ring is not compact if only a\

is kept fixed (or a_i, for that matter). As an example, consider

f(z)=z — Nz~1 which is univalent in p<|z| <1 if iV^l, and let
Ar->+oo.

We add here a remark regarding the sharpness of (7). As shown

above, this inequality is sharp in the sense that, if p is given, there

exists a function whose coefficients a\, a_i, an will lead to equality in

(7). However, if p and o_i/ai are given independently (there are cer-

tain limitations; for instance, it follows from (3) that a_i^p2ai if

f(z) (ER), the bound (7) will in general no longer be the best possible.

We now turn to the class S, which we shall further restrict by the

assumption that ao = 0. As in the case of Taylor series, this results in

somewhat simpler formulas. If/(z)G-S', our assumptions imply that

arg {f(re'e)} (p <r <l) varies monotonically if 0 grows from 0 to 2tt;

it may be either increasing or decreasing. Now it is easy to see that

under these circumstances there must exist an angle 0O such that the

variation of arg {fire10)} between 0=0O and 0=0o+7r is exactly w.

Indeed, since | A arg {f(reu)} | between 0O and 0o + 27r is 2ir, the cor-

responding variation on one of the intervals 0o^0^0o+?r, 0o+7r^0

^0o + 27r must be ^tt and on the other it is ^ir. A monotonic in-

crease of 0O by the amount ?r will reverse the role of the two intervals.

Since, for constant r {p<r <\), f(rem) is a continuous function of 0,

it follows therefore that there exists an angle 0o with the above prop-

erties. Hence, we may find suitable real numbers a, /3 such that the

function

g(z) = c-/(e%)

takes real values for z = r and z=—r. Obviously, g(z)€ES and

arg {g(reie)} will thus vary monotonically with 0. The function g(z)

(or — g(z), obtained by replacing a by a+7r) is therefore such that

Im {g(/ei9)}>0for O<0<irand Im \g(reiB)} <0 for 7r<0<27r. It re-

sembles, in this respect, the functions of R discussed before and, in-

deed, we may use a technique similar to that employed in the case

of the class R.

If
CO CO

(8) /(a) =   E «n3n, g(z) =   £ bnzn, ffl0 = h = 0,
n=—eo n=—oo

it follows from the definition of g(z) that
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(9) | an | = | bn |.

From   the  properties  of  g(z)   just  mentioned,  we  conclude   that

sin0 Im{g(reM)} ^0, for O^0<2tt, whence by (8),

sin 6 Im < X) (bnrn - blnr~n)eine>  ^ 0.2

With the notation

(10) bnrn - blnr~n = C„ = An+ iBn, »^1, An, Bn real,

this is equivalent to

00

Ai + E cos n9(An+1 - An^) + sin m0(£„_i - Bn+1) ^ 0, 0 g 6 < 2x,
n=l

Wo = B0 = 0).

By a well known classical inequality for positive trigonometric

series, it now follows that

| -4„+i - yln_i - t(-Bn-i - -Bn+i) | S 2.41, » = 2, 3, • • • .

Hence, by (10), | Cn+\— C„_ij ^2A\^l\ d\. Using induction and

the fact that C0 may be taken to be zero, we find that | C„| ^w| C\\

for « = 2, 3, • • • . In view of (10), this yields

I bHrn — 6_„r_n | ^ n\bir — 6_ir-11

and thus, by (9),

(11) | an | r" — | o_„ | 7--n | ^ »([ fli | r + | «-i | r~l),   n = 2, 3, ■ • ■ .

This inequality is satisfied for every p<r<l and thus also for r=p,

r = l. Hence,

(1 - p2") | a„ | ^ | | oB | - | «_„ | | + p" | | a_„ | p"» - | o„ | pB |

g n[ | fll | (1 + p"+1) + | o_i | (1 + P"-1)],

and we have the following result.

Theorem II. If

00

f(z) =   X) a„zn, p < | z | < 1, o0 = 0,
n=—oo

ma/is p< |z| <1 ow/o a domain star like with respect to the origin, then

2 Asterisks denote complex conjugates.
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(12) | o.| ^ —^— [ | ox | (1 + p*«) + | o_, | (1 + P-1)],
1 — p2n

n = ± 2, ± 3, • • • .

That this inequality also holds for negative values of n is seen by

eliminating \an\ from the two inequalities obtained from (11) by

setting r = l and r=p, respectively.

If the Laurent series reduces to a Taylor series, (12) reduces to the

well known sharp inequality \an\ ^w|oi|. In the general case, how-

ever, it is doubtful whether (12) is sharp. The function (6) belongs

to 5 and for geometric reasons it seems not unlikely that this function

may also play the role of the extremal in our present problem. In this

case, (12) would be superseded by the inequality (7), in which ai and

a_i are replaced by \ai\ and |a_i| respectively.
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