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almost everywhere. This hypothesis is satisfied in all of the physical

examples known so far.

In addition it generally happens that Xi<0, so that the inequality

u(x) ^XiWo(x) is vacuously true when w(x) is in U, i.e., a true absolute

minimum occurs.

Bibliography

1. G. Goertzel, Minimum critical mass and flat flux, Journal of Reactor Science

and Technology vol. 2 (1952) pp. 19-25 (declassified 11/10/52, CF-52-2-9).
2. A. C. Zaanen, On the theory of linear integral equations, III, Neder. Akad

Wetensch. Amsterdam vol. 49 (1946) pp. 292-301.

Nuclear Development Associates, Inc.

A CHARACTERIZATION OF ANALYTIC FUNCTIONS1

j. e. Mclaughlin and c. j. titus

1. Let/ be a mapping of an open set D in the xy-plane into the

wz/-plane where the component functions u and v are continuously

differentiable. If the mapping is sense preserving, then the Jacobian,

/(/), cannot be negative at any point. If, by analogy with analytic

functions, one assumes also that the Jacobian is zero only if the

Jacobian matrix has rank zero, then one is led to the study of a

family of mappings % where

/eg-wco^o,
■7(f) = 0 ->- rank of J is zero.

The purpose of this paper is in part to show that if any real linear

vector space of mappings 53 is contained in gf and 53 contains a pair

of analytic functions whose derivatives are independent on D, then

93 contains only analytic functions.

We first prove an algebraic lemma upon which the whole charac-

terization rests.

2. Let S be the vector space of all 2X2 matrices of the form

_       C"!)
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where a and b are real numbers. Then S is isomorphic to the complex

numbers and £ enjoys the property

cee-Hcl ^o.     I c l = det c,
(p) i   ,

|c| = 0->C = 0.

We first prove

Lemma 1. E is a maximal vector space having property (P) in the

algebra of all 2X2 matrices.

If the lemma is false, there is a vector space 93 with property (P)

which properly includes S. Let 2? £93, DQ^L. Then the matrices /, /,

and D are linearly independent. (I is the identity, J2= — I.) It then

follows that I, J, D, and DJ are linearly independent. For suppose

X, /x, a, t, not all zero, exist so that

(2) X7 + vJ + o-D + tDJ = 0.

Then right multiplication by /gives

(3) X7 - ill + o-DJ - tD = 0.

Since I, J, and D are independent, it follows from (2) that tt^O and

from (3) that <r^0. Thus

/X ix a     \       y. X t
Z>/= -(—/ + —/ + —!>) = —/-/ + —Z?

V t r t     /        <x a cr

which implies —cr/T = T/<r or o-2+r2 = 0. This is a contradiction and

the independence of I, J, D, and DJ is established.

For any real numbers X, ju, <r, r, with o,2+7"2^0,

| XJ + /jJ + cD + tDJ I = | \I + lJ + 2J(<r/ + tJ) I

- | (X7 + pJ)(«rZ + r7)-» + Z? |

• | o-I + tJ I > 0,

since the matrix in each factor is in 93 and is not zero. Hence the space

spanned by I, J, D, and DJ, which is just the space of all 2X2

matrices, has property (P) and this contradiction establishes Lemma

1.

Lemma 2. Let 9B be any vector space in the space of all real 2X2

matrices which enjoys the property (P). Then 9B is either one-dimen-

sional and equivalent to the scalar matrices or 9B is two-dimensional and

equivalent to the space S.

The one-dimensional case is completely trivial. Suppose 9B has
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dimension greater than one. Then there exists a pair of matrices

U, V in SB which are linearly independent. By property (P) one has

for all real X and fi that

(4) | XL7 + nV | ^ 0

which implies

| X/ + fiVU-11 ̂  0,

and equality holds if and only if X=/i = 0.

Let VU~1=A, and let SB denote the two-dimensional space

spanned by / and A. From (4) we see that SB also has property (P).

Since the minimum function of A is quadratic, it is clear that SB is

closed under multiplication. Similarly one sees that if \I+fiA^0,

then (X/+^)_1GSB. Hence SB is a two-dimensional division algebra

over the reals. Then SB is isomorphic to the complex numbers and

therefore by the Skolem-Noether theorem [l ] there exists a non-

singular P such that SB = P(5P-1. Then VZJ-^PCP-1 for some C£g.

If we set P"1 £/ = (?, we have U = PIQ, V = PCQ. If SB contains a

matrix W such that U, V, and W are linearly independent, then the

space generated by I, C, and P~1WQ~1 would be three-dimensional,

contain E, and enjoy property (P). This contradicts Lemma 1 and

hence SB is two-dimensional and equivalent to S.

Let % be a family of mappings defined on a domain D which satisfy

the following conditions:

(a) /i./aEiH-Xi/i+Xj/seg for all real Xi and X2.
(b) f€L%-*-f is continuously differentiable.

(c) /£3"M:he Jacobian of / is non-negative and zero only if it is

of rank zero.

Theorem. If % contains a pair of analytic functions, /i and /2,

whose complex derivatives are independent on D (Im fif^O on D), then

5 is a linear vector space of analytic functions.

Proof. Let 3 denote the set of all Jacobian matrices of mappings

in %. They must form at every point (x0, yo) of D a linear vector

space of 2X2 matrices with the property (P). Thus the Jacobian

matrix J for an arbitrary mapping fG.% at (x0, yo) must have the

form

) = PCQ where C£E
Vx    Vv/(x0,V0)

Since ft and /2 are analytic functions and their derivatives are inde-

pendent, their Jacobian matrices at (xo, yo) have the form
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m = (Xl -f) = c,     /(/,) - (X2 "") = c2
VH Al/ \M2 A2/

where G and C2 are independent. There exist then C\ and C2 in &

such that

PCiQ = Ci,       PCiQ = C2.

However, since a vector space with the property (P) can be at most

two-dimensional one has that P&(3 = ®. Thus our given Jacobian

matrix at (x0, yo) must be in £ which implies that the component

functions of/satisfy the Cauchy-Riemann equations. Since (x0, yo)

was arbitrary and the Jacobian was assumed to be continuous, it

follows that / is an analytic function as was to be proved.
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