and for each particular f the measure may be so chosen that (moreover)
7.13

$$
\int_{B} \log |f(x)| m_{s}(d x) \geqq \log |f(s)|
$$

Naturally, if for some reason there is for some s only one measure satisfying 7.12, then 7.13 holds for that measure.

Bibliography

I. L. H. Loomis, An introduction to abstract harmonic analysis, New York, 1953.
II. G. Szegö, Über die Randwerte einer analytischen Funktion, Math. Ann. vol. 84 (1921) pp. 232-244.
III. I. Gelfand, D. Raikov, and G. Šilov, Commutative normed rings, Uspehi Matematiceskih Nauk N.S. vol. 2 (1946) pp. 48-146. (In Russian).
IV. D. Milman, Characteristics of extremal points of regularly compact sets, Doklady Akademia Nauk SSSR N.S. vol. 57 (1947) pp. 119-122 (In Russian); Mathematical Reviews vol. 9 (1948) p. 192.

University of California, Los Angeles

FAMILIES OF CURVES

S. STEIN

Amasa Forrester in [1] proved the following theorem of a mixed Euclidean and topological character. If ϕ is a continuous map without fixed points on the Euclidean n-sphere such that ϕ^{2} is the identity, then the chords $P \phi(P)$ for all points P of the sphere completely fill the interior of this sphere.

The object of this note is to generalize this theorem to a purely topological statement.

First we recall the definition of retract. If $B \subset A$ are two spaces, then B is a retract of A if there is $r: A \rightarrow B$ which leaves fixed all points of B. (If X and Y are spaces the symbol $f: X \rightarrow Y$ shall denote a continuous map from X to Y.)

Let I denote the unit interval. If $F: B \times I \rightarrow A$ and $t \in I$, define $F_{t}: B \rightarrow A$ by $F_{t}(b)=F(B, t)$ for all $b \in B$.

Observation. If $F: B \times I \rightarrow A$ and if B is a retract of A by the map r and if $p, q \in I$, then $r F_{p}$ is homotopic to $r F_{q}$.

In fact such a homotopy is provided by $G: B \times I \rightarrow B$ defined by
Presented to the Society, November 28, 1953; received by the editors October 26, 1953 and, in revised form, February 28, 1954.
$G(b, t)=r F(b, p+(q-p) t)$. Clearly $G_{0}=r F_{p}$ and $G_{1}=r F_{q}$.
Now let E^{n+1} be the topological $n+1$ dimensional cell and S^{n} its boundary (an n dimensional topological sphere). Now, for any point $P \in E^{n+1}-S^{n}, S^{n}$ is a retract of $E^{n+1}-\{P\}$ by the map

$$
r: E^{n+1}-\{P\} \rightarrow S^{n}
$$

defined by carrying over the central projection of the Euclidean cell by a homeomorphism. This fact and the observation yield:

Proposition 1. If $f_{i}: S^{n} \rightarrow S^{n}, i=0,1$, are not homotopic and if $F: S^{n} \times I \rightarrow E^{n+1}$ satisfies $F(P, i)=f_{i}(P), i=0,1$, all $P \in S^{n}$, then F is onto E^{n+1}.

Proposition 2 (generalization of Forrester's theorem). Let $\phi: S^{n} \rightarrow S^{n}$ be of period $p \neq 1$. Let $F: S^{n} \times I \rightarrow E^{n+1}$ satisfy (a) $F(P, 0)=P$ and (b) $F(P, 1)=F(\phi(P), 1)$. Then F is onto E^{n+1}.

Proof. Observe first that it is sufficient to prove this for p prime. For if p were not prime and q is a prime dividing p, then the hypothesis of Proposition 2 is satisfied with ϕ replaced by $\phi^{p / q}$ and the latter is of prime period. In the following proof therefore p is taken to be prime.

Assume on the contrary that there is a point $Q \in E^{n+1}-F\left(S^{n} \times I\right)$. By (a), $Q \notin S^{n}$ and by a previous remark there is a retraction $r: E^{n+1}$ $\rightarrow\{Q\} \rightarrow S^{n}$. Regarding F as a map into $E^{n+1}-Q$ we would have $r F_{0}$ homotopic to $r F_{1}$. Now $r F_{0}$ is the identity map of S^{n} (hence of degree 1) while $r F_{1}$ has the property that $\left(r F_{1}\right) \phi=r F_{1}$ on account of condition (b).

To conclude the proof it shall be shown that any map $g: S^{n} \rightarrow S^{n}$ satisfying $g \phi=g$ has a degree divisible by p.

By [2] there is a cycle of the form $c+\phi(c)+\phi^{2}(c)+\cdots+\phi^{p-1}(c)$ in a generator of $H^{n}\left(S^{n}, J_{p}\right)$. Calling this cycle z we have $g(z)=p c=0$ $(\bmod p)$. Thus the degree of g is divisible by p. This concludes the proof of Proposition 2.

Forrester's family of straight lines may be described by

$$
F: S^{n} \times I \rightarrow E^{n+1}
$$

where $F(P, t)$ is the point Q on the line segment joining P to $\phi(P)$ such that $P Q / P \phi(P)=t / 2$.

If the notion of homotopy is translated into the language of a continuous family of curves then Proposition 2 becomes:

Proposition 2'. If (1) $\phi: S^{n} \rightarrow S^{n}$ satisfies the condition stated in Proposition 2 and (2) from each point P of S^{n} there begins one curve of
E^{n+1} so that the curves beginning at P and $\phi(P)$ have the same terminal point and (3) the parametrization of these curves depend continuously on P, then this family of curves fills E^{n+1}.

Proposition 3. Let R^{n} refer to n dimensional Euclidean space. If for each direction in R^{n} there is given in a continuous manner precisely one straight line with that direction, then this family of lines fills R^{n}.

Proof. Compactify R^{n} to E^{n} by adding two points at infinity for each direction in R^{n}. Then apply Proposition 2 or 2^{\prime} with $p=2$.

Proposition 4. Let A be a compact subset of R^{n}. A necessary and sufficient condition that A be a convex set with the property that each support plane has precisely one contact point is that there exists a continuous choice function on the set of $n-1$ dimensional planes, meeting A, with values in A. Moreover any such function is onto A.

Proof. Let A be a convex subset of R^{n} with the property that each plane of support has one point of contact. Assign to each crosssection its centroid. By Proposition 2 with $p=2$ it is easy to show that this function is onto A (compare to p. 13 of [3]).

The proof of sufficiency is left to the reader. In a subsequent paper the intersection properties of families of curves will be considered.

Bibliography

1. Amasa Forrester, A theorem of involutory transformations without fixed points, Proc. Amer. Math. Soc. vol. 3 (1952) pp. 333-334.
2. P. A. Smith, Appendix B, in S. Lefschetz Algebraic topology, Amer. Math. Soc. Colloquium Publications, vol. 27.
3. T. Bonnesen and W. Fenchel, Konvexe Korper, New York, Chelsea, 1948.

University of California, Davis

