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In the study of uniform approximation by rational functions to
functions of a complex variable, a controlling role is played by the
point set of the z-plane on which the approximating takes place. In
1936, M. Lavrentieff [1] proved the following theorem:

THEOREM. If E is a closed bounded point set of the z-plane whick has
no interior and does not separate the plane, then every funciion f(2) con-
tinuous on E is uniformly approximable on E by a polynomial.

This theorem represents the best result that can be established for
uniform polynomial approximation to functions which are merely
continuous; the converse may be found in J. L. Walsh’s work on
approximation [5]. The aim of this paper is to extend Lavrentieff’s
theorem by establishing it on a certain class of sets which do separate
the plane. The methods used will be similar to those first introduced
by M. Keldysh [2] and S. Mergelyan [3].

That the possibility of uniform approximation to continuous func-
tions cannot be established for all closed bounded sets with no in-
terior may be seen from the following counterexample, presented by
V. A. Tonyan [4]:

Let E be the closed set with no interior obtained by removing from
the unit disk a countable number of open disks %, which are dis-
tributed everywhere densely in the disk, and whose circumferences T,
are tangent neither to each other nor to the unit circumference. Let
us further choose these disks in such a way that their radii ¢, satisfy
> 2, & <e where €>0 is a given fixed number.

Now suppose that for any function f(2) continuous on E there
exists a rational function R(z) such that

(a) ] R(z) — f(2) l <e forz € E.

Then, denoting by &,, (1=1, 2, - - -, p) the disks which contain the
poles of R(2) lying in Iz[ <1, we have

f R()ds = f R(z)dz.
Tyytee 4Dy, |zl=1
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Now
[ s@a=[  s0-res+ RG) — f@)ds
lzl=1 lz]=1

Tyite e o4y

+ f(z)dz

Tyt .+I‘,,p

and so, using (a) and the choice of the radii of the &,, we have

(b) ] [ o

For any f(z) bounded on Iz[ <1, the right-hand side of (b) may be
made arbitrarily small by appropriate choice of ¢>0. It suffices then
to pick an f(2) such that | Sie1= f(z)dz| #0 to obtain a contradiction.

We proceed now to characterize a particular class of sets on which
the possibility of uniform approximation can be established.

DEFINITION. Given a closed bounded set E which divides the plane.
Any open set C such that EN(the complement of C) no longer di-
vides the plane will be called a cutting set of E.

< 2me + 2me + 2me max | f(z) |.

z 'y,
E"l

LEMMA. Given a closed bounded set E which divides the plane, there
exist cutting sets of E of arbitrarily small measure.

Since E is bounded, it cannot divide the plane into more than a
denumerable number of regions. Let us enumerate these regions.
Connect region 1 with region 2 by an open set of measure <m/2;
connect region 2 with region 3 by an open set of measure <m/2%; etc.
Let C be the union of these open sets. g.e.d.

THEOREM. Given E a closed bounded point set with no interior and the
points 21, 25, + - -, at least one in each of the regions into which E di-
vides the plane. If there exist cutting sets of E whose closures have
arbitrarily small measure, then any function f(z) continuous on E may
be uniformly approximated on E by a rational function with poles in the
points 2.

It may be pointed out that if the bounded set E has measure zero
it automatically satisfies the conditions of the theorem:.

ProoOF. Since, by Weierstrass’ theorem, any continuous function
on a closed set may be uniformly approximated by polynomials
II(x, ¥) in x and y, it is sufficient to prove the theorem for such
polynomials. Let II(x, y) =u(x, ¥) +v(x, ), , v real functions.

Let us choose a sequence of open sets Di, Ds, - - - so that:

1. EED 1 ED,.
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2. Every D, consists of a finite number of disjoint regions, each
with an analytic Jordan boundary.
3. The complements of D, converge to the complement of E.
Let L,=D,—D,. Now from Green'’s formula we have
1 ()

O(x, y) = I(z) = —
27t t— 2

n

+_ff ug — vy + 1(“n+ve)
2 D, —3

where u;=0u(t, 7)/0¢t, ¢ =&+, z=x+414y, 2EE, and for F({)=u;
—vy+2(u,+ovp) =141, we have |F(§‘)| <M, ¢{€E. Since
1 )

L(Z) = Z‘r‘;

dt

dt

t— 2

La

is analytic for z&EE and since

f f . ff)z ddn, 1 € E,

ff F(§) s € E,

as n— o, it is sufficient to show, by virtue of the boundedness of
F({), that given ¢ >0

approaches uniformly

max
:EE

fj;eyg‘—_—dgdn—q(z) <¢€

for some ¢(z) analytic for zEE.

Given m >0, by hypothesis there exists a cutting set C of E such
that the measure of C is <m. We can therefore find two open sets
A, B such that CCB, BCA4, and the measure of 4 <2m. Let 2d be
the least distance between the boundary of C and that of B; 2d>0.
Let C4, Co4, be C plus the set of all points exterior to C whose dis-
tance from the boundary of Cis <d, 2d respectively. Let

0= [f,_ —— sEE,

1
@ =[] dedn, =y
IEEn[oomplement of A § — 2

Now



674 H. J. LANDAU [October

1
9 @-s@l<[[  ———am<ams, s€E,
{EENa |§' - Z|

so that it will be sufficient to approximate uniformly to g(z), z2EE.
For zEEN [compl. of C], g(2) is continuous and EN [compl. of C]

is a closed set with no interior not dividing the plane. Therefore by

Lavrentieff’s theorem, we can find a polynomial p(2) such that

(1) lez) — p(3)| <& 2E EN [compl. of C].

For 2€4, g(z) is analytic, and so on the closed set BNE we can
find an analytic function a(z) such that

(2) |g(z) — a(z)| < ¢ s € ENB.
Now let
p(z) for s & [compl. of Cy),
46,9 = |
a(z) for s EC, 2 &€ E.
In any circle D(s): Iz—sl <d, 2EE, we have, by (1) and (2),
3) le@) — ¢(,9) | < z EiE.
Let us now introduce
3 r
—(1—-—), 0<r<d,
K(r) = { wd? d
0, r > d,
and let
6@ = [[ o 9K(|s = 5| )dutn (€ E,
|s]<2Rg

where s=u-41v, z2=x-+1y, R, is the maximum diameter of E. We
now observe some of the properties of the smoothing function K:

® fflsl<2ko K(l tT ZI Ydudv = 1,
(B) ffls|<mo K"(I s = Zl Ydudy = fj.ls|<2ko Ky(| s = Z| Ydudy = 0,

ff le(lS’—Zl)ldudv
(C) |s|<2Ry

ff|3|<m° I K"(l s—zl) | dudv

< —
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Consequently, by (A) and (3),
| #() — 5() |

) §ff | 6(z, 5) — g(2) | K(| s — 2| )dudv < ¢, zE E.
l8|<2Ry
Let us now examine more of the properties of ¢(2). For 2z outside
C.a—C, 2EE, ¢(2) =p(2) or a(z), depending on whether z is outside
or inside of C. Therelore, at those points, ¥ (2) =¢.(z) +ip,(2) =0 by
the Cauchy-Riemann equations.
For z in (Cea— C)NE

o = | fI o, 18259+ 8, 9IK(| s = 5 o

+fﬁ3|<2Ro &(z, S)[Kx(ls - Zl )+ 1«K”(| s — zl )]dudv

S is1<ero[®2(2, ) +idy (2, s)]K(Is—zI)dudzJ:O since, for every point
SECq4, ¢(z, s) is analytic for zEE [=a(z)], thus ¢.+i¢p, =0, and
for every point s& [complement of Cai], ¢(z, s) is analytic for
2EE[=p(2)], thus ¢,.+ip,=0. Finally, therefore,

¥(z) =ffm<m &z, ) [Ko(|s — 3|) + iKy(| s — 2] ) ]dudo

(z&€ (C:a— C) M E)
=0 (z outside Coq — C, z € E)
and, using (B), (C), and (3), we obtain

12¢
|¢(z>|=[ ] f[ et s>—g<z>][Kz+iK,,]dudv{ =€k

We know that the inequalities (1), (2), and consequently (3) and
(4), as well as the analyticity of a(z), hold not only on E but on a
somewhat larger set which includes E in its interior. Therefore this
is true as well of the properties which we have derived for . Let us
call by R(e) the larger open set which includes E in its interior and
such that on R(e) all the relations we have established for 2EE still
persist. Then if T is an open set with a sufficiently smooth boundary
which lies interior to R(e) and which contains E (we may take T to
be one of the sets D, previously constructed with » sufficiently large)
we have, by Green’s formula again,
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1 o(?) 1 4%, .
¢(Z) = . dt + erfg_ez' dfdﬂ, Z:E Ey

2w BoundaryofT ! — 2 {— 2z
by virtue of what we know about ¥(¢{), we may write

1
#(8) = — i

2w Boundary of T t—z

—I——l-ff V) dtd zE€ E
27 {€cra—c1nT { — 2 ” )

The first integral is analytic for zEE; thus there exists a function
¢(2) analytic for zEE such that

dt

1 12
|#(2) — q(a) | = —ff Mdédn < — A, 5 EE.
2rd Jiercu—cinr | ¢ — 2] 2rd

Using (4) and (1°) we now have

| 16) = a(&) | < 42+ e+ — A, 5€ E,

P
A

A;, A, absolute constants. Given € >0, choose m“small enough:'to
make 4m'/2<€/2; this determines d. Then pick e sufficiently small
to make the rest <¢€'/2. q.e.d.
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