SOME CRITERIA OF UNIVALENCE!
ZEEV NEHARI

In an earlier paper [3] it was shown that the univalence of an
analytic function w =f(2) in the unit disk can be assured by conditions
of the type | {w, 2}| <=m(|2]), where m(|3|) is a suitable positive

function and
'\’ 1 W'\ 2
= (2)-2)
w' 2 \w

is the Schwarzian derivative of w=/f(z). The two cases treated in [3]
were m(l zl )=w2/2 and m(l zI )=2(1— ] zl 2)—2, The constants appear-
ing in both criteria are the largest possible. In the first case this is
shown by the existence of the nonunivalent function w=tan v (1 4¢)z/2
(e>0) for which {w, z} =72(14¢€)?/2, and in the second case by an
example constructed by E. Hille [2]. Other criteria of this type have
meanwhile been announced (without proof) by V. Pokornyi [4], the
only sharp one among them being the one corresponding to m(l zl)
=4(1—lz| 2)=1 with the extremal f(z) = [{(1 —3%)~%dz.

The main objective of the present note is to establish the following
more general criterion of univalence.

THEOREM 1. The function f(2) will be univalent in lzl <11
1) | {72), 2} | = 20(]2]),
where p(x) is a function with the following properties: (a) p(x) is posi-
tive and continuous for —1<x<1; (b) p(—x) =p(x); (c) (1 —x2)2p(x)
is nonincreasing if x varies from 0 to 1; (d) the differential equaiion
(2 ¥'(x) + p(x)y(x) = 0
has a solution which does not vanish for —1<x<1. The constant 2 in
(1) cannot be replaced by a larger number.

The proof of Theorem I, like that of the other criteria mentioned
above, rests on the fact that a function f(z) is univalent in a region D
if, and only if, no solution of the differential equation

A3) 4"(z) + q(x)u(z) = 0, 29(z) = {f(2), 2}

vanishes in D more than once [3]. If f(2) is not univalent in 'zl <1,
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there will therefore be two points, say « and 8 (lal <1, IBI <1,a#pB),
at which one of the solutions of (3) will vanish. There exists a unique
circle which passes through « and 8 and is orthogonal to |z| =1.
This circle is divided by |z| =1 into two arcs, one of which contains
the points «, 8 and will be denoted by C. Since the statement of
Theorem I is invariant with respect to a rotation of the z-plane
about the origin we may assume, without losing generality, that C
is in the upper half-plane and symmetric with respect to the imagi-

nary axis.
A suitable linear substitution of the form?
w+ ¢
) "= i (¢l <

will carry C into the linear segment —1 <w <1, and it will, of course,
map Izl <1 onto |w| <1. It is easy to see that, because of the par-
ticular location of C, one of these substitutions must be of the form

w+ ip

5 = "
) g l—ip'w,

0=sp<L
The points «, 8 are carried, respectively, into two points a, b on the
real axis. We may assume, without loss of generality, that a is at the
left of b, so that —1<a<b<1.

The substitution (4) will transform the equation (3) into

(6) v"(w) + q1(w)o(w) = 0, u(z) = ¢(w)o(w),
where ¢(w) is regular and different from zero in || <1, and

+¢
& 2w = g v}, o) = 5({5m):

It is easily confirmed that

(ot w} = (o) {60, 53

d
and that
dz 1— |z
dw| 1— | wl?

It follows therefore that
(= [w®? {ew), w}| = 1 =292 {f@), 5} |,

2 Asterisks denote complex conjugates.
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and thus, by (1), that
(1 = w|92] {g(w), w}| = 200 — | 5[92p(] 2]).

By hypothesis (c) of Theorem I, (1 —x?)2p(x) is nonincreasing if x
grows from 0 to 1. Now it is evident from (5) that |z| >|w| if
—1<w<1. Hence,

(1 =202 2]) = (1 — w?)2p(w), —1<w<1,
and therefore
(8) | {g(w), w}| < 2p(w), —1<w<l.

By our assumptions, there exists a solution v(w) of (6) which van-
ishes at two points a, b for which —1 <a <b<1. Multiplying (6) by
v*(w) and integrating from a to b along the real axis, we obtain, after
an integration by parts,

b b
f | v'(w) |2dw = f g1(w) | o(w) |2dw.
Hence, by (7) and (8),
b b
[ 1o lw = [ o) o(w oo

If we write v(w) =0 (w) +17(w), both ¢(w) and 7(w) vanish for w=a, b,
and we have |v'(w)|?=0"%(w)+7'%(w). Thus,

© [l + @lie s [ pw) e + 2wl

Let now A be the lowest eigenvalue of the differential system
¥'(w) + Mp(w)y(w) =0,  y(a) = y(b) = 0.
By Rayleigh’s inequality, we have

b b
)\f p(w)o*(w)dw §f o'?(w)dw,
and a similar inequality for 7(w). Combining this with (9), we obtain
b 1 po
f [¢"2(w) + 7'*(w) |dw < Tf [¢"2(w) + 7'*(w) |dw.

It follows that A=<1 and therefore, in view of p(w)>0 and the
Sturm comparison theorerm, that a solution of (2) which vanishes at
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w=a must have yet another zero in the interval ¢ <w=b. By the
Sturm separation theorem, all solutions of (2) must therefore vanish
in the interval a Sw<b, and thus in —1 <w<1. But this disagrees
with hypothesis (d) of Theorem I, and the assumption that there
exists a solution of (3) which vanishes in |z| <1 more than once will
therefore lead to a contradiction. It follows that the function f(2)
must be univalent if it satisfies the hypotheses of Theorem 1.

If p(x)=n2/4, or p(x) =(1—x2)—2 equation (2) has the solutions
y=cos mx/2 and y=(1—x?)!?, respectively, and Theorem I applies,
yielding the results derived in [3]. Since these results are sharp, the
same is thus true of Theorem I. Theorem I is, however, not only
sharp in the sense that the constant 2 in (1) cannot in general be re-
placed by a larger one. The following, more precise, statement holds.

Let p(3) be regular in |z| <1, | p(2)| <p(|2|), and let p(x) (z=x+1y)
satisfy hypotheses (a), (b), (c), (d) of Theorem 1. If (2) has a solution
which vanishes for x= +1, and if €>0, then there exists a function f(2)
which is not univalent in |z| <1 and for which

(10) | {f@), 2} | = @+ 9p(]5])

for suitable values of 2.

Indeed, if we set 2¢(2) = (24¢€)p(2), the equation "' (2) +q(2)u(z) =0
will—by the Sturm comparison theorem—have a solution with two
zeros in the interval —1<z<1. It follows that the function f(z), for
which { f(2), z} =2¢(z), cannot be univalent in ] zl <1. Since, more-
over, f(2) satisfies (10) for real values of z, our statement is proved.

Every function p(x) which satisfies hypotheses (a), (b), (c), and
for which we can find the lowest eigenvalue X of the differential sys-
tem

(11) ¥'(®) + rp(2)y(x) =0,  y(£1) =0,

will therefore yield a sharp criterion of univalence, provided p(2) is
regular in |z| <land Ip(z)l ép(] zl ). For instance, if p(x) = (1 —x%)—,
(11) has the solution y(x) =1—x?2, with A =2. f(2) will thus be univa-
lent in |z| <1 if | {f(2), 2}| <4(1—|2|?~, in accordance with the
result of Pokornyi [4] mentioned further above.

If (11) cannot be solved explicitly, less accurate criteria can be
obtained by estimating the eigenvalue A from below. As an illustra-
tion, we replace (11) by the equivalent integral equation

1
(12 3© =2 [ p(a)sz Dy,
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where 2g(x, £) = (14+x)(1 —§) for —1=x=fand 2g(x, &) =(14+£)(1 —x)
for ESx <1. Obviously, 2g(x, £) =1 —x2for —1=x=1. If £is taken to
be such that ly(x)l =< Iy(E), in —1=x<1, it follows from (12) that

1= 1P(x)g(x, £dx,
and therefore
(13) 2= lp(x)(l — x?)dx.
-1
Combining this with Theorem I, we arrive at the following result.

If

(14) e, e s b s] < 1,

1

(1 = s%)p(x)dx

and p(x) satisfies hypotheses (a), (b), (c) of Theorem 1, then f(z) is
univalent in |z| <1.

While it is known that the constant 2 in (13) is the largest possible
[1], the decision whether or not (14) is the best criterion of its kind
will depend on the existence—or non-existence—of functions p(x) for
which the right-hand side of (13) is arbitrarily close to 2 and which,
at the same time, satisfy |p(z)] ép(l z| )(l zl <1) and hypotheses
(a), (b), (o).
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