
SOME CRITERIA OF UNIVALENCE1

ZEEV NEHARI

In an earlier paper [3] it was shown that the univalence of an

analytic function w =f(z) in the unit disk can be assured by conditions

of the type | [w, z}\ ^m(\z\), where m(|z|) is a suitable positive

function and

is the Schwarzian derivative of w =/(z). The two cases treated in [3 ]

were m(\z\) =ir2/2 and m(\z\) =2(1 — \z\ 2)~2. The constants appear-

ing in both criteria are the largest possible. In the first case this is

shown by the existence of the nonunivalent function w = tan ir( 1 + e)z/2

(e>0) for which {w, z\ =7r2(l+e)2/2, and in the second case by an

example constructed by E. Hille [2]. Other criteria of this type have

meanwhile been announced (without proof) by V. Pokornyi [4], the

only sharp one among them being the one corresponding to w(|z|)

= 4(1 - | z\2)-1, with the extremal /(z) =/^(l -z2)~2dz.

The main objective of the present note is to establish the following

more general criterion of univalence.

Theorem I. The function f(z) will be univalent in \z\ <1 if

(1) \{f(z),z}\^2p(\z\),

where p(x) is a function with the following properties: (a) p(x) is posi-

tive and continuous for —1 <x<l; (b) p( — x) =p(x); (c) (1 —x2)2p(x)

is nonincreasing if x varies from 0 to 1; (d) the differential equation

(2) y"(x) + p(x)y(x) = 0

has a solution which does not vanish for — 1 <x<l. The constant 2 in

(1) cannot be replaced by a larger number.

The proof of Theorem I, like that of the other criteria mentioned

above, rests on the fact that a function/(z) is univalent in a region D

if, and only if, no solution of the differential equation

(3) u"(z) + q(z)u(z) = 0, 2q(z) = {/«, z}

vanishes in D more than once [3]. If/(z) is not univalent in \z\ <1,
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there will therefore be two points, say a and |8(|a| < 1, \B\ <l,a^j3),

at which one of the solutions of (3) will vanish. There exists a unique

circle which passes through a and 0 and is orthogonal to |z| =1.

This circle is divided by \z\ =1 into two arcs, one of which contains

the points a, (3 and will be denoted by C. Since the statement of

Theorem I is invariant with respect to a rotation of the z-plane

about the origin we may assume, without losing generality, that C

is in the upper half-plane and symmetric with respect to the imagi-

nary axis.

A suitable linear substitution of the form2

(4) Z = TX7^ (|f|<D
1 + f*w

will carry C into the linear segment —1 <w<l, and it will, of course,

map |z| <1 onto \w\ <1. It is easy to see that, because of the par-

ticular location of C, one of these substitutions must be of the form

w + ip
(5) Z = -;-, 0 g p < 1.

1 — ipw

The points a, 0 are carried, respectively, into two points a, b on the

real axis. We may assume, without loss of generality, that a is at the

left of b, so that -Ka<b<l.

The substitution (4) will transform the equation (3) into

(6) v"(w) + qi(w)v(w) = 0, u(z) = <j>(w)v(w),

where <p(w) is regular and different from zero in \w\ < 1, and

/   w+f \
(7) 2qi(w) = {g(w), w\,       g(w) = /( ).

\ 1 + K w /

It is easily confirmed that

[g(w), w} = (--\ {/(z), z]

and that

dz |       1 - | z|2

dw |       1 — j w \2

It follows therefore that

(l-|w|t)«| {g(w),w}\ = (1-|2|2)2| {/(i), i} |,

2 Asterisks denote complex conjugates.
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and thus, by (1), that

(1 - | w |2)21 \g(w), w) I ^ 2(1 - | z \2)2p( | z | ).

By hypothesis (c) of Theorem I, (1— x2)2p(x) is nonincreasing if x

grows from 0 to 1. Now it is evident from (5) that |z| >|w| if

— 1 <w<l. Hence,

(1 - | z \2)2p( | z | ) ^ (1 - w2)2p(w), - 1 < w < 1,

and therefore

(8) | {g(w), w\ | ^ 2p(w), - 1 < w <1.

By our assumptions, there exists a solution v(w) of (6) which van-

ishes at two points a, b for which —1 <a<b<l. Multiplying (6) by

v*(w) and integrating from a to & along the real axis, we obtain, after

an integration by parts,

/ib /» b
| v'(w) \2dw =   I     qi(w) | v(w) \2dw.

a J a

Hence, by (7) and (8),

| v'(w) \2dw S   I    p(w) I v(w) \2dw.
a J a

If we write v(w) =a(w)-\-ir(w), both a(w) and t(w) vanish for w — a,b,

and we have \v'(w)\2 = o-'2(w)-\-t'2(w). Thus,

/» b r* b
\<j'2(w) + r'2(w)]dw ^   I    p(w)[a2(w) + r2(w)]dw.

a ^ a

Let now X be the lowest eigenvalue of the differential system

y"(w) + \p(w)y(w) = 0,        y(a) = y(b) = 0.

By Rayleigh's inequality, we have

/• b /» 6
p(w)o-2(w)dw ^  I    c'2(w)dw,

a "a

and a similar inequality for t(w). Combining this with (9), we obtain

f   [c'2(w) + T'2(w)]dw g — f   [o-'2(w) + r'2(w)]dw.

It follows that X^l and therefore, in view of p(w)>0 and the

Sturm comparison theorem, that a solution of (2) which vanishes at
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w = a must have yet another zero in the interval a<w^b. By the

Sturm separation theorem, all solutions of (2) must therefore vanish

in the interval a^w^b, and thus in — 1 <w<l. But this disagrees

with hypothesis (d) of Theorem I, and the assumption that there

exists a solution of (3) which vanishes in \z\ <1 more than once will

therefore lead to a contradiction. It follows that the function /(z)

must be univalent if it satisfies the hypotheses of Theorem I.

If p(x) =7r2/4, or p(x) = (1 —x2)-2, equation (2) has the solutions

y = cos irx/2 and y = (l—x2)1/2, respectively, and Theorem I applies,

yielding the results derived in [3]. Since these results are sharp, the

same is thus true of Theorem I. Theorem I is, however, not only

sharp in the sense that the constant 2 in (1) cannot in general be re-

placed by a larger one. The following, more precise, statement holds.

Let p(z) be regular in \z\ <1, \p(z)\ ^p(\z\),andletp(x) (z = x+iy)

satisfy hypotheses (a), (b), (c), (d) of Theorem I. If (2) has a solution

which vanishes for x= +1, and if e>0, then there exists a function f(z)

which is not univalent in \z\ <1 and for which

(10) |{/M.*}|-(2 + «)rf|f|)

for suitable values of z.

Indeed, if we set 2q(z) — (2 + e)p(z), the equation m"(z)+c7(z)w(z) =0

will—by the Sturm comparison theorem—have a solution with two

zeros in the interval — 1 <z<l. It follows that the function/(z), for

which {/(z), z} =2q(z), cannot be univalent in \z\ <1. Since, more-

over,/(z) satisfies (10) for real values of z, our statement is proved.

Every function p(x) which satisfies hypotheses (a), (b), (c), and

for which we can find the lowest eigenvalue X of the differential sys-

tem

(11) /'(*) + \p(x)y(x) = 0,        y(+l) = 0,

will therefore yield a sharp criterion of univalence, provided p(z) is

regular in \z\ <\ and\p(z)\ ^p(\z\). For instance, if p(x) = (1 —x2)-1,

(11) has the solution y(x) =1 —x2, with X = 2./(z) will thus be univa-

lent in \z\ <1 if | {f(z), z}\ g4(l-|z|2)-1, in accordance with the

result of Pokornyi [4] mentioned further above.

If (11) cannot be solved explicitly, less accurate criteria can be

obtained by estimating the eigenvalue X from below. As an illustra-

tion, we replace (11) by the equivalent integral equation

(12) y({) - \f   p(x)g(x, S)y(x)dx,
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where 2g(x, £) = (1 +x)(l -£) for -1 ^x^£ and 2g(x, §) = (1 +£)(1 -x)

forifgxgl. Obviously, 2g(x, £) gl-x2 for -lgxgl. If £ is taken to

be such that |y(x)| ^ \y(t;)\ in —1 ̂ x^l, it follows from (12) that

1 g X J    p(x)g(x, $)dx,

and therefore

(13) 2 ^ X f   p(x)(l - x2)dx.

Combining this with Theorem I, we arrive at the following result.

U

i ,           > i                 2p(\z\) .
{f(z),z]\ £■    fi -, |z|<l,

/(l - x2)p(x)dx
0

and p(x) satisfies hypotheses (a), (b), (c) of Theorem I, then f(z) is

univalent in \z\ <1.

While it is known that the constant 2 in (13) is the largest possible

[l], the decision whether or not (14) is the best criterion of its kind

will depend on the existence—or non-existence—of functions p(x) for

which the right-hand side of (13) is arbitrarily close to 2 and which,

at the same time, satisfy |^(z)| ^£(|z|)(|z| <1) and hypotheses

(a), (b), (c).
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