PARTIAL ORDER AND INDECOMPOSABILITY¹

A. D. WALLACE

In this note it is shown that, under suitable auxiliary hypotheses, no nontrivial "continuous" partial order can exist on an indecomposable continuum.

Let X be a regular T_1 space and let \leq be a binary relation on X. It is assumed that

- (i) \leq is transitive and reflexive.
- (ii) For each $x, y \in X$ there is a $z \in X$ such that

$$z \leq x$$
 and $z \leq y$.

The topology of X and the relation \leq are assumed to satisfy

(iii) If $x \in X$ and if U is an open set about

$$L(x) = \{ y \mid y \le x \},$$

then there is an open set V about x such that

$$x' \in V \text{ implies } L(x') \subset U.$$

A discussion of this kind of "continuity" will be found in [3]. We asume also

(iv) For each $x \in X$ the set L(x) is compact and connected.

THEOREM. If X is a connected indecomposable space and if \leq satisfies the above conditions, then $x \leq y$ for each $x, y \in X$.

PROOF. If $x_1, x_2, \dots, x_n \in X$, then (i) and (ii) imply that

$$L(x) \subset L(x_1) \cap \cdots \cap L(x_n)$$

for some $x \in X$. Hence

$$A = \bigcap \{ L(x) \mid x \in X \}$$

is nonvoid, using (iv). If $a \in A$, then $L(a) \subset L(x)$ for each $x \in X$ by (i). It follows that L(a) = A so that A is connected.

Suppose that the conclusion is false. Then $L(z) \neq X$ for some $z \in X$. Since L(z) is closed there is a non-null open set W such that $L(z) \cap W^* = \square$, because X is regular. We use * for closure and \ for complement. Let

Presented to the Society, June 19, 1954; received by the editors February 15,1954.

¹ This work was done under Contract N7-onr-434, Task Order III, Navy Department, Office of Naval Research.

$$B = \{ x \mid L(x) \subset X \backslash W^* \}.$$

The set $B \neq \square$ since $A \subset L(z)$ and L(a) = A if $a \in A$. Also B is open because of (iii). We assert that

$$B = \bigcup \{ L(y) \mid y \in B \}.$$

For if $x \in B$, then $x \in L(x)$ by (i). If $y \in B$, then $L(y) \subset X \setminus W^*$ and $x \in L(y)$ implies $L(x) \subset L(y)$ by (i) so that $L(x) \subset X \setminus W^*$ and $x \in B$. This representation shows that B is connected because it is the union of a family of connected sets all meeting the connected set $A \subset B$. Hence X contains the nonvoid open connected subset B with $B^* \neq X$. Thus X is not indecomposable. The proof is complete.

To obtain the initial assertion of our note let X be a continuum (compact connected Hausdorff space) and let

$$R = \{(x_1, x_2) \mid x_1 \leq x_2\}.$$

If R is closed then it is quite easy to see that (iii) holds and that L(x) is closed for each $x \in X$, e.g., [2], [3], or [5]. Hence the theorem obtains if R is closed and if L(x) is connected for each $x \in X$. Of course we assume (i) and (ii).

Although this note is self-contained we refer to [2], [3], [4], and [5] for further results on "continuous partial orders." An interesting and formally analogous relation between "transitivity" and indecomposability has been given by Kuratowski [1, p. 147].

BIBLIOGRAPHY

- 1. C. Kuratowski, Topologie II, Warsaw, 1950.
- 2. L. Nachbin, Topologia e ordem, Chicago, 1950.
- 3. W. L. Strother, Continuity for multi-valued functions, Tulane dissertation, 1952.
- 4. A. D. Wallace, A fixed point theorem, Bull. Amer. Math. Soc. vol. 51 (1945) pp. 413-416.
- 5. L. E. Ward, Jr., Partially ordered topological spaces, Summa Brasiliensis Mathematicae, to appear.

THE TULANE UNIVERSITY OF LOUISIANA