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COMPACT SEMIGROUPS WITH ZERO1

R. J. KOCH

We recall that a mob is a Hausdorff space together with a continu-

ous associative multiplication. A nonempty subset A of a mob X is a

submob if AAEA. This note consists of an amplification of results

of Numakura dealing with primitive idempotents in a compact mob

X with zero (see definitions below). We discuss the properties of cer-

tain "fundamental" sets determined by primitive idempotents,

namely the sets XeX, Xe, eX, and eXe, where e is a primitive idem-

potent. These are, respectively, the smallest (two-sided, left, right,

bi-) ideal containing e. Included in Theorem 1 is a characterization

of a primitive idempotent in terms of its "fundamental" sets. There

then follow some remarks on the structure of the smallest ideal con-

taining the set of all primitive idempotents.

Finally, if e is a nonzero primitive idempotent of the compact con-

nected mob X with zero, then the set of nilpotent elements of X is

dense in each of the "fundamental" sets determined by e.

It is a pleasure to acknowledge the advice and helpful criticism of

W. M. Faucett and A. D. Wallace.

We shall assume throughout most of this note that X is a com-

pact mob with zero (0). For a£X we denote by T(a) the closure of

the set of positive powers of fl, and by K(a) the minimal (closed) ideal

of T(fl). K(a) is known to be a (topological) group and consists of

the cluster points of the set of powers of a ([3; 5]; these results de-

pend only on the compactness of T(a)). Also T(a) contains exactly

one idempotent, e, and if e = 0 then the powers of a converge to 0.

An element a is termed nilpotent if its powers converge to 0, and we

denote by N the set of all nilpotent elements of X. A subset A of X is

termed nil if A EN. An idempotent e of X is primitive if g=g2EeXe

implies g = 0 or g = e. Recall that a subset A of A" is a bi-ideal if

(1) AA EA and (2) AX A EA [2; 3 ].

Lemma 1. Let e be an idempotent oj the compact mob X and denote

by ffrf (e) the collection oj sets Xja, where ja is an idempotent oj XeX.

Let M.(e) be partially ordered by inclusion; then Xe is a maximal mem-

ber ojM(e).
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Proof. Suppose/is anidempotent inXe^Xand XedXf. Then there

are elements a, o of X so that f = aeb and we may assume ae=a, eo

= 6. NowXeQXf implies eG-X/, ef = e; henceforeach positive integer

ra, aneb" = an-1eaebbn-1 = an-1efbn-1=a"-1ebn-1= ■ ■ • =aeb=f. Hence

there is an idempotent g^Tia) and an element AGr(o) so that f = geh

[5]. We note ge = g, hence/=g/=(ge)/=g(e/) =ge = g and f = g = ge

=fe. Hence /G-Xe and XfCXe, completing the proof.

We remark that the arguments used in the proof of the lemma are

due to Rees [7] and Numakura [5].

Corollary. Let e be an idempotent of the compact mob X; then eXe

is maximal among the sets fXf where P=f^XeX.

Proof. Suppose f^XeX and eXeCJXf. Then ef = e=fe and «G-X/;
hence XeCLXf so Xe = Xf by the theorem. Hence f=fe = e and eXe

=fXf.

Lemma 2. Let M be a left iright, two-sided, bi-) ideal of a mob X and

suppose a^M with T(a) compact; then T(a)CAf.

Proof. We give the proof for a bi-ideal M; the other proofs are

similar. Since M is a mob, the set of powers of a is contained in M.

Now aK~ia)aCMXMCM and aK~ia)aCKia) since Kid) is an ideal

in T(a). Hence Kid)P\M?±0, so that Kia)C_M since no group can

properly contain a bi-ideal. It follows that T(a) QM.

Lemma 3. Let X be a mob with zero and suppose a^X with T(a)

locally compact; then a@L-N implies Tia)(~\N=0.

Proof. Suppose xGr(a)P\7V; then {x"} converges to 0, so OGr(x)

Cr(a). Hence T(a) has a minimal ideal and we have from [3]

that T(a) is compact. Since r(a)02W0, it follows that Kia)C\N

9*0, hence i£(a) =0 and aGA7, a contradiction.

Theorem 1. Let ebe a nonzero idempotent of the compact mob X with

zero; then these are equivalent:

(1) e is primitive.

(2) ieXe)\N is a group.

(3) eXe is a minimal non-nil bi-ideal.

(4) Xe is a minimal non-nil left ideal.

(5) XeX is a minimal non-nil ideal.

(6) each idempotent of XeX is primitive.

Proof. (1) implies (2). We first show ieXe)\N is a mob. Since e is

assumed primitive, ieXe)\N has a unit e and no other idempotents.

Suppose a, b^ieXe)\N and aoGA7; we claim Xa = Xb=Xe. Accord-
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ing to [3] there is an idempotent jET(a) such that [\nXan = Xj.

Now a£A implies (Lemma 3) T(a)(~\N = 0, hence e£r(a) and e=j.

Therefore (\nXan = Xe, so XaZ)Xe. Since aEeXeEXe, XaEXe and

the claim is established for a. Similar arguments establish the claim

for b. Now using the claim and the fact that e is a unit for a and b one

may verify that X(ab)n = Xe for each positive integer n. Hence

Xe = f\nX(ab)" = Xj for some idempotent/ in T(ab) (see [3]); but

abEAf implies/=0, Xe = 0, and e = 0, a contradiction. This shows

(eXe)\N is a mob. For yE(eXe)\N we conclude as above that

eEY(y); since e is a unit for y it follows that K(y) —T(y) is a group

[3 ] contained in (eXe)\N by Lemmas 3 and 2. Hence 3/ has an inverse

in (eXe)\N, completing the proof of (2).

(2) implies (3). Let If be a non-nil bi-ideal of X contained in eXe

and choose aEM\N; then aXaEMEeXe. Let/ be a nonzero idem-

potent in aXa; then since (eXe)\N is a group and /£A, j = eEM.

Hence eXeEMXMEM.

(3) implies (4). Let P be a non-nil left ideal of X contained in Xe

and choose a£P\Ar. Then there is a nonzero idempotent jEY(a),

and XjEP. Hence eXjEeP = ePeEeXe. Now since jEXe,j=je and

{ej)(ef)=e(fe)f = eff=ef so that e/ is idempotent. Note that e/£A,

for otherwise ej= 0 and /= (je)j=j(ej) = 0. Therefore eA/ is a non-nil

bi-ideal and hence coincides with eXe. Since /£P, eXe = eXjEP and

we conclude eEP, XeEP-

(4) implies (5). Let if be a non-nil ideal of X contained in XeX,

and let / be a nonzero idempotent in M. Then there are elements

a, b, of X so that j=aeb. Let g = bae; then g2 = baebae = bjae and

g3 = g2. Note that bjr^O, since otherwise j = aeb=aebj=0. Also g2&/

= bjaebj = bj; hence g2^0, otherwise bj=0. Now g2EXjX and

g2£A"e, so by (4), Ie = Zg!CI/I and we conclude e£A/X,

ZcZClf.
(5) implies (6). Let/ be a nonzero idempotent of A"eX and suppose

g is a nonzero idempotent with gEjXj (hence gXgEjXj). Since

/, gEXeX we have XgX = XjX = XeX and jEXgX. It follows from

the corollary to Lemma 1, then, that gXg=jXj, hence g=j and j is

primitive.

(6) clearly implies (1), completing the proof of the theorem.

Several of the above implications have been demonstrated by

Numakura [6].

Corollary 1. Let e be a primitive idempotent oj the compact mob X

with zero. Then (Xe)\N and (Xe)(~\N are submobs and (Xe)\N is the

disjoint union oj the maximal (closed) groups (eaXea)\N where ea runs

over the nonzero idempotents oj Xe.
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Proof. Suppose a, oG(-X"e)\7V and aoGA7. Since Xe is a minimal

non-nil left ideal, we know that Xa = Xe = Xb. Then as in the proof

of (1) implies (2) we conclude XTe = 0, a contradiction.

Suppose a, bGiXe)C\N and ab$N. Then (ao)2GXao and (ao)2

G-A7, otherwise aoGA7 [5, Lemma 3]. Hence Xab = Xe by the theo-

rem; since aGI«, XaC-Xe. We have a right translate of Xa filling

all of .Xe, so according to [3, Corollary 2.2.1] there is an idempotent

/ in T(o) which is a right unit for Xe. However oG-A7 implies/ = 0 so

that Xe = 0, a contradiction.

Finally, pick aG(Xe)\A7; by the theorem we have Xa = Xe and by

Lemma 3 we have Tia)f~\N= 0. Choose an idempotent/ in T(a);

then Xe = Xf so that/ is a right unit for Xe. Hence T(a) is a group,

showing that Xe\N is the union of groups. For any nonzero idem-

potent e„£Xe, Xea = Xe so that ea is primitive and ieaXea)\N is a

group. Now the maximal group [9] containing ea is contained in

eaXea; moreover, since any group which meets N must be zero, we

conclude that ieaXea)\N is a maximal group. This is closed by the

compactness of X, completing the proof.

In [6] Numakura shows that if M is a minimal non-nil ideal, and

if J is the largest ideal of X contained in N, then M—iJ(~\M), the

difference semigroup in the sense of Rees [7], is completely simple

(i.e. simple with each idempotent primitive). It follows that M\N

is the disjoint union of isomorphic groups, and M\J= U[(Xfea)\J]

where e« runs over the nonzero idempotents in M. It would be of

interest to know more of the multiplication in M\J. Corollary 1 aims

in this direction. If E represents the set of primitive idempotents of

the compact mob X with zero, then iXEX)\J = (XE)\J and

iXEX)\N is the disjoint union of groups. (In this connection, see also

[l ].) At this writing it is not known whether or not E must be a closed

set.

As shown in [6], if N is open then there exists a nonzero primitive

idempotent. According to Corollary 1, the condition that N be open

may be weakened as follows:

Corollary 2. Let X be a compact mob with zero; then X contains a

nonzero primitive idempotent if and only if there is a nonzero idem-

potent e with ieXe)\N closed.

Proof. If / is a nonzero primitive idempotent of X, then (JXf)\N

is a maximal group and hence is closed. On the other hand, if ieXe)\N

is closed and e9*0, then since the set of nilpotent elements of eXe

is ieXe)C\N, we conclude from [6] that eXe contains a nonzero

primitive idempotent. Hence so does X, completing the proof.
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A five element example due to R. P. Rich [s] serves to illustrate

these results; J. G. Wendel has given the following matrix repre-

sentation of Rich's example:

-a- «=-(-::> -a
This can be modified to furnish a compact connected example, as

follows. Let

-CI-CO}-
where the entries are real numbers between —1 and 1 inclusive.

Here N is the totality of those matrices with main diagonal entries in

the open interval ( — 1, 1); J, the largest ideal of X contained in N,

is the totality of those matrices with every entry lying in the open

interval ( — 1, 1). It can be shown that X — J is completely simple.

If e is one of the four idempotents

Voo/'     \o    oj'     (ii)'     V-i J'
then (Xe)\J consists of two disjoint two-element groups. If e is any

other nonzero idempotent, then (Xe)\J consists of one two-element

group and one two-element subset whose square lies in /.

Theorem 2. Let e be a primitive idempotent oj the compact connected

mob X with zero; then (eXe)C\N is dense in eXe (hence (Xe)(~\N is

dense in Xe and (XE)C\N is dense in XE).

Proof. We denote the compact mob eXe by Y, let Ni = YH\N, and

note that Ni is open in Y in view of Corollary 1 of Theorem 1. De-

note by L the largest left ideal of Ycontained in Ni; since A7! is open

in Y, so is L [4]. Since L* (stars denote closure) is a left ideal of Fit

follows from the connectedness of Y that L*(~\(Y\N)t±0. Hence

there is a nonzero idempotent in L*C\(Y\N), and this must be e.

Therefore (eXe)e = eXeEL*EN? so that (eXe)C\N is dense in eXe.

The remainder of the theorem follows from Corollary 1 and the re-

marks which follow it.

In conclusion we remark that the results of this note can be ex-

tended as follows. Let Mhe an ideal of the mob X. We define an idem-
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potent e to be M-primitive if the only idempotents in eXe either

coincide with e or else belong to M. Then by replacing N by Nm

= {a: Tia)r\M960\, the results obtained here for primitive idem-

potents hold for Af-primitive idempotents with obvious modifica-

tions in statements and proofs; here we need not assume the existence

of a zero.
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