A REMARK ON A NORM INEQUALITY FOR SQUARE MATRICES

M. D. MARCUS

In a recent paper W. Gautschi [1] obtained the following inequality for a non-nilpotent n-square matrix A:

(1)
$$\left(\sum_{i=1}^{n} |\lambda_{i}|^{2p}\right)^{1/2} \leq ||A^{p}|| \leq c_{0} p^{k-1} \left(\sum_{i=1}^{n} |\lambda_{i}|^{2p}\right)^{1/2}$$

where $||A||^2 = \sum_{i,j=1}^n |a_{ij}|^2$, p is an integer, c_0 a constant depending only on A, and k the maximum multiplicity of any characteristic root of A. By a reduction to Jordan canonical form an inequality of type (1) may be obtained for any convergent matrix power series g(A), $g(z) = \sum_{n=0}^{\infty} a_n z^n$, a_n real, which in the case $g(z) = z^p$ implies (1).

THEOREM. Let g(z) have radius of convergence $\rho > 0$. Let A be an n-square matrix whose characteristic roots satisfy $|\lambda_i| < \rho$. Let the multiplicity of λ_i be k_i , $i = 1, \dots, \alpha$, and $k = \max k_i$. Then if A is not nilpotent there exists a constant c depending only on A such that

$$\left(\sum_{i=1}^{n} |g(\lambda_{i})|^{2}\right)^{1/2} \leq \|g(A)\| \leq c \left(\sum_{i=1}^{\alpha} \sum_{s=0}^{k_{j}-1} \frac{(k_{j}-s)}{(s!)^{2}} |g^{(s)}(\lambda_{j})|^{2}\right)^{1/2}.$$

PROOF. A very slight extension of Gautschi's argument yields the lower bound. For by Schur's theorem [2] there exists a unitary matrix U reducing A to triangular form D with characteristic roots along the main diagonal. Then

$$UAU^* = D$$
 and $UU^* = I$

imply

$$||g(A)||^{2} = \operatorname{tr} (g(A)g^{*}(A)) = \operatorname{tr} (g(A)g(A^{*}))$$

$$= \operatorname{tr} (Ug(A)g(A^{*})U^{*}) = \operatorname{tr} (Ug(A)U^{*}Ug(A^{*})U^{*})$$

$$= \operatorname{tr} (g(UAU^{*})g(UA^{*}U^{*})) = \operatorname{tr} (g(D)g(D^{*}))$$

$$= \operatorname{tr} (g(D)g^{*}(D)) \ge \sum_{i=1}^{n} |g(\lambda_{i})|^{2}$$

since g(D) is a triangular matrix with $g(\lambda_j)$ along the main diagonal. To obtain the upper bound let T be such a nonsingular matrix that $TAT^{-1} = \text{diag } (E_1, \dots, E_{\alpha}) = \text{diag } E_j; E_j = \lambda_j I_j + U_j, I_j \text{ the } k_j$ -square

Received by the editors April 17, 1954.

identity matrix and U_j the k_j -square matrix with 1 along the superdiagonal and 0 elsewhere. Then setting $c = ||T|| ||T^{-1}||$, we have

$$||g(A)|| = ||T^{-1}Tg(A)T^{-1}T|| = ||T^{-1}g(TAT^{-1})T|| \le c||g(\operatorname{diag} E_i)||$$

= $c||\operatorname{diag} g(E_i)||$.

An elementary calculation shows (S. Lefschetz [3])

$$g(E_i) = g(\lambda_i I_i + U_i) = \begin{bmatrix} g(\lambda_i) & g^{(1)}(\lambda_i) & \cdots & g^{(k_i-1)}(\lambda_i)/(k_i-1)! \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & g(\lambda_i) \end{bmatrix}$$

and hence by summing down the diagonals,

$$||g(E_i)||^2 = \sum_{s=0}^{k_j-1} ((k_j - s)/(s!)^2) |g^{(s)}(\lambda_i)|^2$$

and

$$\|g(A)\|^2 = c^2 \sum_{j=1}^{\alpha} \|g(E_j)\|^2 \le c^2 \sum_{j=1}^{\alpha} \sum_{s=0}^{k_j-1} \frac{(k_j-s)}{(s!)^2} \|g^{(s)}(\lambda_j)\|^2,$$

and the proof is complete.

If $g(z) = z^p$ we may easily estimate $||g(E_j)||$. We distinguish two possibilities: (i) $p > k_j - 1$, (ii) $p \le k_j - 1$. If (i), $\lambda_j = 0$ implies $||g(E_j)|| = 0$, and $\lambda_j \ne 0$ implies

$$\|g(E_j)\|^2 = |\lambda_j|^{2p} \sum_{s=0}^{k_j-1} {p \choose s}^2 (k_j - s) |\lambda_j|^{-2s} \le c_1 |\lambda_j|^{2p} p^{2k-2}.$$

If (ii), $\lambda_j = 0$ implies $||g(E_j)||^2 = (k_j - p)(p!)^2 \le c_2 p^{2k-2}$, and again $\lambda_j \ne 0$ implies the same conclusion as in (i), where c_1 and c_2 depend only on the multiplicities and magnitudes of the λ_j . Thus

$$||g(A)||^2 \le c^2 p^{2k-2} \left(c_2 + c_1 \sum_{i=1}^n |\lambda_i|^{2p}\right) \le c_0^2 p^{2k-2} \sum_{i=1}^n |\lambda_i|^{2p}$$

since A not nilpotent is equivalent to $\sum_{j=1}^{n} |\lambda_{j}|^{2} \neq 0$. Noting that $\sum_{j=1}^{n} |g(\lambda_{j})|^{2} = \sum_{j=1}^{n} |\lambda_{j}|^{2p}$, Gautschi's result follows. We may employ the inequality to unify conveniently the familiar results concerning the asymptotic behavior of the system of ordinary differential equations $\dot{x} = Ax$, A an n-square constant matrix, x an n-column vector, with fundamental matrix of solutions $\exp(tA)$. Consider $g(z) = \exp(tz)$, $g^{(s)}(z) = t^{s} \exp(tz)$, $t \geq 0$, and the resulting inequality

$$\left(\sum_{j=1}^{n} |\exp(t\lambda_{j})|^{2}\right)^{1/2} \leq \|\exp(tA)\|$$

$$\leq c \left(\sum_{i=1}^{\alpha} \sum_{s=0}^{k_{j}-1} \frac{(k_{j}-s)}{(s!)^{2}} |(t^{s} \exp(t\lambda_{j}))|^{2}\right)^{1/2}.$$

Letting $r_i = \text{Re }(\lambda_i)$ we have

$$\left(\sum_{j=1}^{n} \exp(2r_{j}t)\right)^{1/2} \leq \left\|\exp(tA)\right\|$$

$$\leq c \left(\sum_{j=1}^{n} \sum_{s=0}^{k_{j}-1} \frac{(k_{j}-s)}{(s!)^{2}} t^{2s} \exp(2tr_{j})\right)^{1/2}$$

and we conclude immediately that:

- (i) $r_j > 0$ for some j implies $\lim_{t\to\infty} ||\exp(tA)|| = \infty$,
- (ii) $r_j < 0$ for all j implies $\lim_{t\to\infty} \|\exp(tA)\| = 0$,
- (iii) $r_j \le 0$ for all j and $r_j = 0$ only if $k_j = 1$ implies $\|\exp(tA)\|$ is bounded on $[0, \infty)$.

In case A is nilpotent, exp (tA) has as entries polynomials in t.

REFERENCES

- 1. Werner Gautschi, The asymptotic behavior of powers of matrices, Duke Math. J. vol. 20 (1953) pp. 127-140.
- 2. I. Schur, Über die charakteristischen Wurzeln einer linearen Substitution mit einer Anwendung auf die Theorie der Integralgleichungen, Math. Ann. vol. 66 (1909) pp. 488-510.
- 3. S. Lefschetz, Lectures on differential equations, Annals of Mathematics Studies, no. 14, p. 6.

THE UNIVERSITY OF BRITISH COLUMBIA