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MULTIPLICATIVE GROUPS OF ANALYTIC FUNCTIONS

WALTER RUDIN

Let D be a proper subdomain of the Riemann sphere, and let M(D)

be the multiplicative group of all regular single-valued analytic

functions on D which have no zeros in D. It is known [l ] that the

algebraic structure of the ring R(D) of all regular single-valued

analytic functions on D determines (and is determined by) the con-

formal type of D. In this paper we ask the question: what informa-

tion about D does the algebraic structure of M(D) give, and, con-

versely, which properties of D determine the algebraic structure of

M(D) ? The answer is, briefly, that M(Di) and M(D2) are isomorphic

if and only if Di and D2 have the same connectivity.

Here the connectivity of D is k if the complement of D has k

components, and is °° if the complement of D has infinitely many

(countable or power of the continuum) components. The structure

of M(D) is described in more detail in the theorem below.

If we associate with each f EM (D) the function g=//|/| we obtain

a subgroup (isomorphic to M(D)) of the multiplicative group C(D)

of all continuous functions from D into the unit circumference. Such

functions have been studied in great detail by Eilenberg [2]. It is

worth noting that our theorem is valid if we replace M(D) by C(D),

and that the proof is essentially the same; but it seems more interest-

ing to stay within the smaller group.

Before stating the theorem, it is convenient to define two sub-

groups of M(D).

(1) Fix a point ZoED and let G(D) be the set of all fEM(D) such
that/(z0) = l. Then M(D) is the direct product of G(D) and the

multiplicative group of the nonzero complex numbers, and G(D)
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contains no elements of finite order. Without loss of generality we

shall assume that z0=0.

(2) Let T(F>) be the set of all fEG(D) for which the equation g" =f
has a solution gEG(D), for every nonzero integer n. It is clear that,

given/ and n, there is only one such g, and that gET(D).

Theorem, (i) The groups T(Di) and T(D2) are isomorphic for any

two proper subdomains of the Riemann sphere.

(ii) G(D) is (isomorphic to) the direct product of T(D) and

G(D)/T(D).
(iii) If the complement of D has k + 1 components, then G(D)/T(D)

is the direct product of k infinite cyclic groups.

(iv) If the complement of D has infinitely many components, then

G(D)/V(D) is isomorphic to the additive group of all integer-valued func-

tions on a countable space.

The proof will be broken up into several steps.

Step 1. The structure ofT(D). Since we consider single-valued func-

tions only, and since every fEY(D) has rath roots of all orders, we see

that/Gr(i>) if and only if the total change in the argument of f(z),

as z travels over any closed path in D, is zero. Hence fEY(D) if and

only iff has a single-valued logarithm in D, i.e., iff is an exponential.

Writing/(z) =e"M, where g is normalized by g(0) =0, the one-to-one

correspondence /<->g is an isomorphism between T(D) and the addi-

tive group A (D) of all single-valued regular analytic functions g on

D such that g(0)=0. Part (i) of the theorem will follow if we can

show that A (Di) and A (D2) are isomorphic.

We are going to show a little more. Let L(D) be the vector space

(over the complex field) whose members are the members of A (D);

we shall see that L(Di) and L(D2) are isomorphic.

Let dim L(D) stand for the cardinality of a Hamel basis of L(D).

It is enough to show that dim L(D) does not depend on D. Let U be

an open circular disc (the unit disc, without loss of generality) such

that UED, let Z be the finite plane, and assume (again without loss

of generality) that DEZ. Then

L(U) D L(D) D L(Z)

so that
dim L(U) ^ dim L(D) ^ dim L(Z).

To  prove  that the  equality signs actually hold,  we  exhibit an

isomorphism between L(U) and a subspace of L(Z): to fEL(U),

f(z) = Z"   anzn,   associate   the   function   gEL(Z)   given   by   g(z)

= Ei" 0n(z/«)".
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Having proved part (i) of the theorem, we shall from now on write

T in place of T(D).
Step 2. Domains of finite connectivity. Suppose D is bounded, and

let Ci, • • • , Ck be the bounded components of the complement of D.

Choose points at (i — 1, • • • , K) in &. For every f EG (D) there is a

unique set of integers «i, • • • , «* and a unique function gEY such

that

(*) f(z) = g(z)I[(l --Y.
,_i \        a J

The integer wy is obtained by considering the change in arg f(z) as z

travels around a simple closed curve which contains Cy (and no other

d) in its interior. The functions (1—z/a<) are the generators of the

factor group G(D)/Y.

The representation (*) proves the theorem completely, for do-

mains of finite connectivity.

Step 3. The structure of G(D)/Y for domains of infinite connectivity.

We shall assume that the complement C of D is bounded, and will

construct a countable set of simple polygons Pt, with interiors Qt,

as follows. Qi contains C. Pn and Pi2 are in Qi, are exterior to each

other, CrM2ii7*0, Cr\Qi2^0, and

c = (cr\Qu)V(crM3i2).

We continue in this manner: if, for some /, Qt contains only one

component of C, we call Pt a final polygon. If Pt is not final, we

construct Pioh-i and Pion-2 in Qt, exterior to each other, such that

Cn(Wi?*0, Cnf2io<+2^0, and

c r\Qt = (c r\Qio^i)\J (c r\ Qiot+-).

We may construct these polygons so that they satisfy one further

condition: for every 5>0 there exists an integer to such that Qt con-

tains no two components of C whose distance exceeds 8 whenever

t>to. (For the details of such constructions, we refer to [3, pp. 46-

56].)

We let T be the set of all t such that Pt is a nonfinal polygon of the

set so constructed. T is a countable set of integers (whose decimal

representations consist of ones and twos), and is the space mentioned

in part (iv) of the theorem.

Let T' be the set of all integers t for which Pt exists. For tET' and

fEG(D), put

2rwf(t) = A, arg/(z),
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where A (indicates the increment as z travels around Pt in the positive

direction. Then w/(l)=0, and for tET the argument principle im-

plies that

w/lO/ + 1) + wf(10t + 2) = wf(t).

For fEG(D), we now define an integer-valued function 5, on T by:

s/(t) = wf(10t + 1) - wf(t) = - w,(10t + 2).

Then s/g(t) =s/(t)+sa(t), so that the mapping /—>s, is a homo-

morphism of G(D) into the additive group 5 of all integer-valued

functions on T. Since S/(t) = s„ (t) for all t E T if and only if w/(t) = w„ (t)

for all tET', and this last equality occurs if and only if f_1gET, we

see that T is the kernel of the above homomorphism, so that G(D)/T

is isomorphic to a subgroup of S.

We next wish to show that G(D)/T is isomorphic to S, i.e., the

homomorphism of G(D) into 5 is onto.

Let sES. We shall construct a function fEG(D) such that sf = s.

For tET, choose xtECC\Qiot+i, ytEC(~\Qiot+2, such that \xt—yt\—*0
as <—>a> (this is possible, by the last condition which we imposed

on the polygons). Putting

«<(z) = (xt - yt)/(z - xt) (tET,zED)

we have 1 —ut(z) = (z—yt)/(z — xt). Since xt—y%—>0, there exists a se-

quence of positive integers kt (fqr instance, /fei = /+|s(0|) such that

£ s(0 {«,(*)}*<

converges absolutely for zED, and uniformly in every closed subset

of D. Like in the standard proof of the Weierstrass factorization

theorem for entire functions we now see that the product

«(«) = n {[1 - ««(*)] exp |^«(z) + • • • +     ^ _ 1   j[

defines a regular analytic function with no zeros in D. Putting

fiz) =g(2)/g(0). we obtain the desired function: s/(t)=s(t) for all

tET.
This completes the proof of part (iv) of the theorem.

Step 4. G(D) has V as a direct factor. In the case of finite connec-

tivity this was trivial; in the general case, we proceed as follows:

By Zorn's lemma, G(D) contains a subgroup H which is maximal

with respect to the two properties
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(A) TC\H= {1} (the set consisting of the identity element alone);

(B) If hEG(D) and hnEH for some integer w^O, then hEH.

By (A), the group YH generated by Y and H is the direct product

of T and H. Assume that G(D) contains an element / which is not in

TH. Let H(f) be the set of all wEG(D) such that wm=fnh for some

hEH and some integers m, n (m^O). Then H(f) is a subgroup of

G(D) which contains H properly and which satisfies (B). Since H is

maximal, H(f) cannot satisfy (A), so that there exists an element

goT^l in T, and an integer m^O, such that g0a=fnh. Since go9^1,

gJVl, so that w^O (by (A)). Choose gEY such that gn=g^; this is

possible since Y is closed with respect to the operation of taking roots.

Then (g~lf)nEH, (B) implies that g~lfEH, but this contradicts the

assumption that fEYH.

Thus G(D) =TH. This establishes part (ii) and completes the proof

of the theorem.

We conclude with the following remark. Since G(D)=YH and

G(D)/Y is isomorphic to S, we see that H and S are isomorphic.

Moreover, this isomorphism is induced by the natural mapping

f—*s/ of Honto S. In Step 3 we constructed, for each sES, a function

fEG(D) such that s/ = s; but the functions obtained by means of this

construction do not form a group, and it seems difficult to modify

the construction (by proper choice of convergence factors) so as to

make the abstract considerations of Step 4 unnecessary.
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