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Introduction. The Picard-Vessiot theory is a Galois theory of homo-

geneous linear ordinary differential equations. Unlike ordinary

Galois theory, however, in which fixing a universe automatically de-

termines the zeros of a given polynomial, Picard-Vessiot theory is

complicated by the fact that a given homogeneous linear ordinary

differential polynomial L(y) of order ^1 possesses infinitely many

zeros. To simplify matters, therefore, one wishes to choose those

zeros of L(y) which are the "simplest" in a certain sense. More spe-

cifically, it is seen in a paper (to appear) generalizing the Picard-

Vessiot theory as presented by Kolchin [l] that the algebraic and

topological structures involved in that generalization are strongly

dependent on the constants introduced when one adjoins zeros of

L(y) to the ground field. It is desirable, therefore, to choose zeros of

L(y) in such a manner that the constants introduced by these zeros

are subject to certain restrictive conditions. This requires a theorem

asserting the existence of zeros of L(y) for which these restrictive

conditions are satisfied. The main result of this paper is a theorem on

the existence of this special type of zeros of L(y).

We fix an abstract ordinary differential field F of characteristic

zero and with field of constants C (i.e. F is an abstract field of char-

acteristic zero in which a derivation is defined, and C is the set of all

elements of F which have derivative equal to 0). We shall assume

throughout that we are given £2, a universal differential extension

field of F, the existence of which is proved in [3, Chap. I, §5]. This

universal extension will contain all the elements which enter the dis-

cussion. In particular, fl will contain an algebraic closure C of C.

We use the standard notation for derivatives; thus, for a£Q the

successive derivatives of a are denoted a', a", • • • , aM, • • • . For

the adjunction of elements to differential fields (for example, to the

differential field F), we shall use F( • ■ ■ ) to denote ordinary field

adjunction, F{ • • • } to denote differential ring adjunction, and

F( • ■ • ) to denote differential field adjunction: thus, for example,
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F(a, fi) = F(a, fi, a', fi', ■ • • ). Also the symbol { ■ • • } will stand
for the perfect differential ideal generated by the elements therein

(i.e. the minimal radical ideal which contains these elements and

which is closed under differentiation).

The letters X, t, y (with or without subscripts) will denote inde-

terminates. We shall say that an element a£ft is a nontrivial zero

of a differential polynomial P(y) if cxt^O but P(ct) =0.

By L(y) we mean a fixed homogeneous linear ordinary differential

polynomial

L(y) = y<»> + piy(n-i) + . . . + pny (re ^ 1, each pt E F).

A system (771, • • • , tj„) of zeros, of L(y) is called fundamental if the

system is linearly independent over constants; it will be called regu-

lar (with respect to F) if it is fundamental and if, further, the field of

constants of F(r)i, • • • , 77„) is an algebraic extension of C. By a theo-

rem of Kolchin [2, Theorem 2], a regular system of zeros (jji, • • • ,r)n)

of L(y) always exists; the field of constants D of F(?ji, • • • , r)n) is

then easily seen to be of finite degree over C. Our main result is to

sharpen this existence theorem by proving the existence of a regular

system of zeros (vi, ■ • ■ , r)„) of L(y) such that D is a normal extension

of C. When (rji, • ■ ■ , tj„) has this property then every isomorphic

image of F(rji, •••,??„) over F has the same field of constants D.

It would be of interest to know whether (771, • • • , tj„) can be

chosen so that D = C.

Preliminary lemmas. The paper consists essentially of two proposi-

tions which together comprise the existence theorem. For these we

need several lemmas.

Lemma 1. Let k be a constant. Then the field of constants of F(k) is

C(k).

This is proved in [3, Chapter I, Corollary 5 of Proposition 3].

Lemma 2. Suppose O^aEF. Then:

(1) if a is an integral of a (i.e. a'=a) transcendental over F, but

the field of constants of F{a) is algebraic over C, then that field of con-

stants is C;

(2) if there exists an integral a of a algebraic over F then there exists

an integral of a in F;

(3) Let K be any algebraic extension of C of finite degree over C. If

there exists an integral a of a algebraic over F then there exists an integral

fi of a such that the field of constants of F(B) is K.

Proof. (1) follows from noting that F(a) = F(ct) is a pure trans-
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cendental extension of F. To prove (2) suppose a is algebraic over F

and a'=a. If aEF let Ylt-o fiXr~l (r>l,fo = l) be the irreducible
polynomial over F with root a. Then  22t=o f&''-* = 0 so

22 (Ji*-* + afi(r - i)*—-1) =10.
i=0

Since /o = 1 the left side of this equality is a polynomial in a over r7

of degree at most r — 1, hence it vanishes identically. In particular,

since the coefficient of of-1 vanishes we obtain f{ +<zr = 0. Hence

B= —fi/rEF is an integral of a, which proves (2). To prove (3), note

first that there exists a constant k such that K = C(k). By (2) we may

assume that aEF. Then |3=a + & satisfies the conditions of (3).

Q.E.D.

Corollary. Suppose O^aEF. Then there exists an integral a of a

such that the field of constants of F(a) is C.

Lemma 3. Suppose O^aEF and let P(y) =y' — ay. Then:

(1) if a is a nontrivial zero of P(y) which is transcendental over F

but the field of constants of F(a) is algebraic over C, then that field of

constants is C;

(2) suppose there exists a nontrivial zero of P(y) which is algebraic

over F. Then any nontrivial algebraic zero a of P(y) of minimal degree

r over F has the property that arEF and the field of constants of F(a) is C.

Proof. (1) follows from the fact that F(a) = F(a). To prove (2) let

a be a nontrivial algebraic zero of P(y) of minimal degree r over F.

Let ]Ci-o fi^r~< (r^l, fo = l) be the irreducible polynomial over F

with root a. Then 22t=o fia-T~i = 0. Differentiating this relation and

utilizing the fact that a' =aa we obtain

E (// +'.a(r - i)fi)a-< = 0.
>-o

Thus a is a root of the nonzero polynomial

22 (fi + a(r - i)fi)X-*
i-0

over F. This latter polynomial is then a multiple of the former. Since

both polynomials are of the same degree the factor is the coefficient

arfo=ar of Xr in the second polynomial. Hence for l^i^r — 1 we

have// -\-a(r — i)fi = arfi or// =aift. If/,- were different from zero for

l^i^r — 1 then/y would be a nontrivial zero of P(y) algebraic over

F of degree ^i<r. This is impossible so/i= • • • =/r_i = 0. Hence
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aT+f, = 0 and aTEF.

Now let dEF(a) be a constant. Then we can write d= Ei-o g«a'

with each giEF. Then, as above, 0= E«=o (gi +aigi)a\ Equating to

zero the coefficient of each a* we obtain go' =0 so goGC and for i>0

gi = —aigi. If gi were different from zero for i>0 then g4_1/< would

be a nontrivial zero of P(y) algebraic over F of degree ^i<r. Hence

gi= • • • =gr-i = 0 and d = goEC. Q.E.D.

Lemma 4. Let (771, • ■ • , t;„) be a fixed regular system of zeros of L(y).

Let (fi, ■ ■ • , fn) be another regular system of zeros of L(y) and let

the field of constants of F(fi, • • • , fn) be E. Then there exists a regular

system of zeros (fi, • • • , fn) of L(y) such that the field of constants Ei

°f F(fi, • ■ ■ , f n) contains E and the field of constants of F(t]i, ■■•,'?„,

fii • • • i f<>) is an algebraic extension of C.

Proof. There exist constants an for l^i, j^n such that det (aa)

5^0andfy= E?-ia»;',7t (1 ^sjSn). Now it iseasy toseethat F(rji, • • •,

Vn, fi, • • • , Tn) = F(rii, ■ • ■ ,rjn, ■ ■ ■ , an, • • • )• Hence if the field of

constants of ^(771, • ■ • , 77„) is D, then by Lemma 1 the field of

constants of F(t71( • • • , ij„, fi, • • • , f») is D( • • • , a(j, ■ ■ ■ ). There-

fore if each a.y is algebraic over C we are finished.

Suppose then that some of the ay are transcendental over C hence

over C(D, E). There is a constant eEE such that E = C(e) and we

can write e=/(fi, • • • , r»)/g(fi. • • ' . fn) where f(yu ■ • • , yn),

g(yu ■ ■ ■ , yn)EF{yi, ■ • • , y„}.
Suppose the matrix (a,y) is specialized over C(D, E) (hence over

F(E) (rji, • • • , 77„)) to a matrix (dn) of constants. Let fy= E"-i an Vi

(l^j^n). Then if h(yx, ■ • ■ , yn)EF(E)[yi, ■ ■ ■ , y„} is such that

''(fir • • ■ . fn)=0, we have

h (   E aHVi, • • •  .  E ai»Vi )  =  °>
\ t-i »=i        /

so

h (   E SOTll  " '  '   >  E dinVi )  = 0,
\ i-l i=l /

whence h(fu • • • , ?„)=0. Thus the family (?7W)  for l^jgw and

v = l, 2, • • • is a specialization over F(E) of the family (f^).

Since det (a,y)=^0 and g(fi, • • • , fn)?^0 we can specialize the

matrix (a,y) over C(D, E) to a matrix (dn) of constants algebraic over

C such that det (a,y)^0 and g(fu • • • , f„)^0. Then (?i, •••,?„)
is   a   fundamental   system   of   zeros   of   L(y).   Let   £1   be   the
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field of constants of F(fi, • • • , f„). Since the field of constants

D( ■•-, da, ■■■) of F(r)i, ■ ■ • , r\n, ft, • • • , f„) is algebraic over C,

so is Ei. Further, the equality e=/(ft, • • • , ft)/g(ft, • • • » ft.) im-
plies that also e=/(ft, • • • , ?»)/g(ft, • • • , ft), whence £C£,.

Q.E.D.

Lemma 5. Suppose n > 1, and L(y) is such that whenever (rn, • • ■ , nn)

and (ft, • • ■ , Tn) are two regular systems of zeros of L(y) with 77,= ft-

for some i, j, then the fields of constants of F(r)i, ■ ■ • , r]n) and

P(Zu • • • . Tn) are equal. Then if (771, ■ ■ ■ , rjn) and (ft, • • • , ft)

are any two regular systems of zeros of L(y) the fields of constants of

P(vu ■ ■ • . Vn) and F(ft, ••-,£„) are equal.

Proof. Let (771, • • • , 77,,) be a regular system of zeros of L(y)

and let the field of constants of F(r]i, • • • , Vn) be D. Let (ft, • • • , f „)

be another regular system of zeros of L(y) and let the field of con-

stants of F(£i, • • • , f„) be E. By Lemma 4 choose a regular system

of zeros (fi, • • • ,fn) of L(y) such that the field of constants of

P(vu • • • 1 Vn, fi, • • • 1 ?n) is algebraic over C and the field of con-

stants Ei of F(fi, • • • , In) contains E.

We can write fy= 22"-i daVi (1 ^j^n) where the a»3 are constants

algebraic over C and det (a,-y) 5^0. Therefore we can choose one of the

rji so that the set (17,, f2, • ■ ■ , fn) is linearly independent over con-

stants. Then this set is a regular system of zeros of L(y) so the field

of constants of F(rn, f2,---, fn) is D. Then the field of constants of

F{fi, • • • , ?n) is D. Thus D=E{Q.E.
By reversing the roles of (-771, •■-,»?„) and (ft, • • • , ft) we ob-

tain £3Z>. Hence D=E. Q.E.D.

Lemma 6. Let po = l. Let rj be a nontrivial zero of L(y) and let

m(d = x; tM f: pn-k( * ,V*~'~1>-
r=.0        fc=r+l V +   1/

Then M(t) is a homogeneous linear ordinary differential polynomial over

F(rj) different from zero and of order n — 1. Let (ft, • • • , ft_i) be any

fundamental system of zeros of M(t) and let ui, • ■ • , nn-i be such that

A4/ =ft f°r l^i^n — 1. Then (n, 771x1, • • • , rjun-i) is a fundamental

system of zeros of L(y).

Proof. This is well known and the proof is classical.

The main result. We now prove the two propositions leading to the

existence theorem.

Proposition 1. Suppose there exist two regular systems of zeros of
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L(y), (771, • • • , 77„) and (fi, • • • , f„), such that the fields of constants of

F(r)i, ■ ■ • , 77„) and F(£i, • • • , f„) are unequal. Let K be a subfield of C

with [C:K] finite. Then there exists a regular system of zeros

(ui, • • • , un) of L(y) such that the field of constants of F(fj.i, • • • , m„)

is normal over K.

Proof. We prove this by induction on re. For re = l write L(y) =y'

— ay. If a = 0 the result is obvious so suppose a^O. There exists a

nontrivial zero a of L(y) such that the field of constants of F(a) is

algebraic over but not equal to C. Hence by Lemma 3, a is algebraic

over F so there is an element fi^O algebraic over F satisfying:

(1) fi'-afi = 0;
(2) of all nontrivial zeros of L(y) algebraic over F, fi is of minimal

degree r over F and b =fiTEF;

(3) the field of constants of F(fi) is C.

Let Ki be a normal extension of K of finite degree over K and con-

taining C. There is a constant k such that K~i=C(k). Let ur = k and

let y=ufi. Then 7 is a zero of L (y) and 7*= kb so the field of constants

of F(y) contains Ki.

Now [F(k)(y): F(k)]^r. Suppose there is a nontrivial zero 8 of

L(y) such that [F(k)(b):F(k)]=s<r. By Lemma 3 we can choose 5

minimal so 8sEF(k). Then we can write 5"= E?=o /»£' where each

fiEF and 1, k, ■ ■ ■ , kq are linearly independent over F. Then s5,_15'

= Ei-o/'^ or saS'= 22i-of'k\ Hence for O^i^q we have/' =safi.

If fi were different from zero then f)'a would be a nontrivial zero of

L(y) of degree ^s<r over F. This is impossible so [F(k)(y):F(k)] =r.

Thus 7 is a nontrivial zero of L(y) of minimal degree over F(k). Hence

by Lemma 3 the field of constants of F(y) is equal to the field of con-

stants of F(k) which is C(k) =Ki by Lemma 1.

Now suppose re^2 and that the proposition is true for n — 1.

By Lemma 5 there exist two regular systems of zeros of L(y),

(77, ni, ■ ■ ■ , Un-i) and (77, fi, • • • , fn-i), such that the field of con-

stants D and E of F(r\, /*!,••-, /xn_i) and ^(77, fi, • • • , f„_i) respec-

tively are unequal. Let £o = l and let

M(t) = 22^22  Pn-i(. *   V1-*-1'-
3=0      i-j+i V   1   1/

It is easily seen that ((ui/n)', ■ • ■ , (un-i/v)') and ((ti/v)', ' ' ' <

(tn-i/y)') are two regular systems of zeros of M(t). Let Gi

= F(V, (ui/v)', • • • , (Mn-iA)') and G2 = F(V, (ti/vY, • • • , (fn-iA)')-
We consider two possibilities:

(1) the fields of constants of Gi and G2 are equal;
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(2) the fields of constants of Gi and G2 are unequal.

In case (1) either the field of constants of Gi is not D or the field of

constants of G2 is not E. Suppose the former. Now F(n, pa, • ■ ■ ,

Mn-i) is obtained from Gi by the successive adjunctions of the integrals

(1x1/77), • • • , (jUn-1/77) of elements of Gi. Therefore by Lemma 2, for

some l=i^» —1, (pa/rf) is algebraic over Gi((ixi/t7), • ■ ■ , (ui-i/t))).

Choose such a value of i. Let Xi = 1x1/77, • • • , \i-i=m-i/v, and let

Di be the field of constants of Gi(Xi, ■ • • , X,_i). Then Di is an alge-

braic extension of finite degree over C hence over K. Let Ai be a

normal extension of finite degree over K which contains Di. By

Lemma 2 we can find an integral X< of (m/v)' such that the field of

constants of Gi(ai, • • •, Xi_i, \/) is Ai. And by the corollary to Lemma

2 we can find integralsX<+i, • • • , X„_i of (ui+i/r])', ■ ■ ■ , (nn-i/y)' re-

spectively such that the field of constants of Gi(Xi, • ■ ■ , X„_i) is Ai.

But we have

Gi<Xi, ■ • • , A„-i) = F(v, (miA)', ■ ■ • , (Mn-iA)'XAi, • • • , A_l>

= F(rj, Xi, • • • , X„_i)

— P(v, »?Xi, • • • , 77\„_i).

By Lemma 6, (77, 77X1, • • • , 77X„_i) is a fundamental system of zeros

of L(y) which proves the proposition in case (1).

If case (2) applies, denote by Ci the field of constants of F(rj).

Then [Ci:A] is finite and M(t) satisfies the hypotheses of the

proposition, so by the induction hypothesis there is a regular system

of zeros (£1, • • • , £„_i) of M(t) such that the field of constants of

P(v, £i» ■ • ' 1 £n-i) is a normal algebraic extension of K. By the corol-

lary to Lemma 2 we can find integrals 61, ■ • • , 0„_i of £1, • • • , £n-i

respectively such that the field of constants of F(n, &,•••, £n-i)

(81, • • ■ , 0»-i) is equal to the field of constants of ^(77, £1, • • • , £n-i),

hence is normal over K. But F(t], ?i, • ■ • , £n-i)(0i, ■ • • , 0n-i)

= F(n, 7701, • • • , ?70n_i) so by Lemma 6 the proposition is proved.

Q.E.D.

Lemma 7. Suppose there exists a field D such that for every funda-

mental system of zeros (771, ■ • • ,nn) of L(y) the field of constants of

P(Vu • • • r Vn) is D. Then D = C.

Proof. Since D is of finite degree over C there is an element dED

such that D = C(d). Let (771, • • • , vn) be any fundamental system of

zeros of L(y) and let (x{i) for l^i, j^n be constants algebraically

independent over Ffoi, • • • , 77,,). Let /x;-= XX1 x^i (1 ̂ j^n). Then

0*ii • • • 1 Mn) is a fundamental system of zeros of L(y) so there
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exist f(yx, • • • , y„), g(yu ■ ■ ■ , yn)EF{yi, ■ ■ ■ , y„} such that

g(Mi> • • • , Mn)^0 and d=f(uu ■ • ■ , un)/g(ui, ■ ■ ■ , un). Clearly we

may assume that f(yi, ■ • ■ , y„) and g(yu • • • , y„) are of order

^re —1 in each y,-. Further, we choose g(yi, • • • , yn) so that one of

its coefficients is equal to 1. Then

(n n \ /     n n \

E XHVi,  *      ■   .   E XinVijd —ft   E XiWh  ■   ■   ■   ,   E *in1»i)   =  0.
i—1 i—1 / \ i-l i-l /

This is an identity in the elements x,y. Let fi, • • • , f„ be any re zeros

of L(y). Then there are constants a,-,- (l^i, j^n) such that fy

= E"-i Q'Pli (1 =i = w)- Then we have

g[ 22 anvi, ■ ■ ■, E <w7i)d — /( E ffwta ■ • •. E ain77,j = o
\ i-l t-1 / \ i-l i-l /

or g(fi, • • • , r„)d— /(fi, • • • , r«)=0. Thus the differential poly-
nomial g(yi, • • • , yn)d-f(yi, ■ ■ ■ , yn)EF(d){yu ■ ■ ■ , yn} vanishes

for every zero of the perfect differential ideal {L(y{), • • ■ , L(yn)}

QF(d){yi, ■ ■ ■ , yn}. Hence [4, Chapter 2, §7] g(yy, ■ ■ ■ , yn)d

~fiyu • " " i yn) 1S an element of that perfect differential ideal. It is

easy to see, however, that any nonzero element of {L(yi), • ■ • ,L(yn)}

has order =i« in at least one yt. Therefore g(yi, • • • , yn)d

—fiyu • • • i yn) =0. But one of the coefficients in g(yu ■ ■ • , y„) is

equal to 1, so one coefficient in f(yi, ■ ■ ■ , yn) is d. Thus dEF.

Q.E.D.

Proposition 2. Suppose there exists afield D such that for every regu-

lar system of zeros (771, ■ ■ ■ , r)n) of L(y) the field of constants of

F(vi, • ■ ■ , Vn) is D. Then either D = C or D = C.

Proof. If for every fundamental system of zeros (ui, • • • , ju„) of

L(y) the field of constants of F(ui, ■ ■ ■ , ju„) is D, then, by Lemma 7,

D = C. Suppose then that for some fundamental system of zeros

(fii • • • 1 fn) of L(y) the field of constants of F(fi, • • • , f„) is not D.

Suppose also that Dt^C.

Now the field of constants E of F(fi, • • • , f„) is transcendental

over C so we may write E = C(au ■ ■ ■ , a,) where «i ■ • ■ , ar (r Si 1) is

a transcendence base for E over C. Then there are differential poly-

nomials/(yi, • • • , y„), g(yi, ■ ■ ■ , yn)EF{yi, ■ ■ ■ , yn} such that

g(fi, • • -.fn^Oanda^/tfi, • • -,fn)/g(fi, ■ ■ ■ ,fn).Let(77!, • • • ,r]„)
be any regular system of zeros of L(y). Then there are constants

fin (1 ̂ i, j^n) such that det (fin) ̂ 0 and fy= E?-i 0W7< (1 ij^n).
Thus
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(n n \ /     n n \

22 PilVi, ■  ■  ■  ,  22 PinVijOtl - /(   22 PilVi, ■  ■  ■   ,  22 PinVi)  =  0.
«-l »-l / \ i—1 i-1 /

There exists a polynomial P(X)ED[X] such that any special-

ization of «i to a constant ai over D (hence over F(t7i, • • • , r)n))

such that P(ai)9i0 can be extended to a specialization (ai, • • • ,

a„ ■ ■ ■ , bij, ■ • •) over D of («i, • • • , a„ • ■ • , /3,-,-, • • • ) such that

g(ZXi °n Vi, ■ ■ ■ ,22"=i binVi)**® and det (bij)7*0. Since D^C so
that C — D is infinite and since ai is transcendental over D we can

specialize «i to an element aiEC — D such that P(a) 5^0. We can then

extend this to the specialization above with the stated properties.

Further, we may choose each ait bijEC.

Let fj= X3?-i bijtji (l^Lj^n). Then the field of constants of

F(t7i, ■■-, nn, fi, ■■■, fn) is D( ■■■, bij ,-•■) so (ft, • • • , ft) is
a regular system of zeros of L(y). On the other hand, we have

g(fu ■ ■ • , fn)ai=f(fi, ■ • ■ , ft) so aiEF(fi, ■ ■ • , ft). Hence the
field of constants of F(ft, • • • , ft) is not D. This is a contradiction.

Q.E.D.

Theorem. There exists a fundamental system of zeros (t]i, • • • , nn)

of L(y) such that the field of constants of F(ni, ■ • • , vn) is a normal

algebraic extension of C.

Proof. This follows from Propositions 1 and 2.
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