ON THE INTERSECTIONS OF THE COMPONENTS OF
A DIFFERENCE POLYNOMIAL

RICHARD M. COHN

The purpose of this note is to prove the following theorem:

Solutions common to two distinct components' of the manifold of a
difference polynomial annul the separants of the polynomial.

We begin by considering a field K, not necessarily a difference
field, and a set of polynomials Fi, Fy,, - -+, Fpin K[uy, - - -, ug;
%1, - -+, %p|, the u; and x; being indeterminates, where for each
j,j=1,---,p—1, F;is free of the xi, k>j. We shall show that any
zero of F1, - - -, Fp which annuls no formal partial derivative dF;/dx;
belongs to just ome component of {Fl, s, F,,}o.2 Furthermore, this
component is of dimension q.

ProoF. Let u;=7v,;, =1, - - -, ¢; xj=a;, j=1, - - -, p, be a zero
of Fy, - - -, Fywhichannulsno 0F;/dx;. Ifyi, - - -, v/ ed, - - -,y
isa zero of Fy, - - -, Fp which specializestoyy, - + -, v 04, - - -, ap,
then this zero too annuls no dF;/dx;. It follows from this that o is
algebraic over K (v{, - - -, v¢), and that for each k, 1 <k=<p, o/ is
algebraic over K(v{, - - - ,¥¢; af, -+, 4—y). This implies that a
component of the manifold of { Fy, - - -, F,}ocontainingys, - - -, vq;
o, * + -, apis of dimension at most g.

Welet u;=t;4+v:,1=1, - -+, ¢;xj=a;+h;, j=1, - - -, p. Here the
t; denote new indeterminates and the &; certain formal series in posi-
tive integral powers of the ¢;, We shall show that the %; may be so
chosen that these substitutions annul Fi, - - -, F,. In fact, the
lemma proved in [3] shows that for each %, 1<k=<p, we may annul
F: by substitutions #; =¢;+v;,1=1, - - -, p, x;=s5;+a;, ]<k, Xk =0
+h!, where thes;, j=1, - - -, p, are new indeterminates, and &/ isa
formal series in positive integral powers of the ¢; and s;, j <k. For
hy we take h{ ; for b, we take the result of replacing s, in k7 by &/ , and
SO on.

With the k; as described let £ denote the set of polynomials in
Kluy, - -, ug %1, - - -, x,] which are annulled by the above sub-
stitutions. Evidently Z is a prime p. i. (polynomial ideal). Its dimen-
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1 The term “component,” not previously defined for difference manifolds, is to
have the expected meaning: a component is a maximal irreducible submanifold of a
manifold. For definitions of other terms and symbols see [2; 3; 4].

2 As in Chapter IV of [1] this notation indicates the perfect polynomial ideal
generated by Fy, Fy, - - -, F;,.
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sion is g and the #; form a parametric set. For evidently Z can contain
no polynomial in the #; alone, while the conclusion of the preceding
paragraph but one shows that its dimension cannot exceed ¢. The
result of that paragraph also shows that no component of

{Fl, cee, F,,}o can properly contain the manifold of Z, for then its
dimension would exceed ¢. Hence this manifold is itself a component
of {Fy, - -, Fplo

Let 9 be a component of {Fy, ---, F,}o which contains
Y, * **,Yei0u, * * ¢, &p, and let A be the prime p.i.in K[u, - - -, %,;
X1, - -+, ¥, | whose manifold is M. We must show that A is Z. If A

is of dimension 0 then, because Z vanishes for a zero of A, and every
zero must be a generic zero, 2 is contained in A. Since the manifolds
of both are components of the same manifold, it follows that A=2
(and that ¢=0). We suppose that A is of positive dimension, and that
A and 2 are distinct. Then, since A cannot contain 2, there is a poly-
nomial P in 2 which is not in A. Then A possesses a zero not annulling
P of the form

ui=7i+gia i=1)°"yq;
1)

xi = a;+ fi j=1--,p
where the g; and the f; are series in positive integral powers of a
parameter §.

It is evident that (1) is a zero of Fy, + - -, F,. We may also obtain
a zero of these polynomials of the form

ui=7i+giy i=lr"‘yq;
(2) / ;

x; = a;+ f], i=1--,p
where the f/ are again series in positive integral powers of ¢, and each
f! is obtained by replacing the ¢;, 1=1, - - - | p, in k; by the cor-

responding g;. It is evident from the manner of formation of (2) that
it is a zero of Z.

We replace the u;in F1 by v;+g:;,i=1, - - -, q. There results a poly-
nomial F, in x; with coefficients power series in . F; vanishes, but its
formal derivative dF,/dx, does not, when we put t=0, x;=a;. It
follows that there is a unique series f;’ in positive integral powers of ¢
such that x;=a;+f]’ is a solution of F;=0. We now replace the
%, 1=1, -+ +,¢q, and x, in Fy; by v,;+g; and ay+f;’ respectively to
obtain a polynomial F; in x, with coefficients power series in ¢. As
before, we see that F,=0 possesses a solution x,=as+f’, where f;’
is a series in positive integral powers of ¢. This series is unique. Con-
tinuing in this way we find uniquely determined f}’, j=1, - - -, p,
which are series in positive integral powers of ¢ such that u;=v;+g;,
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=1, .- ,q;x,~=a,~+f,",j=.1, ---,p,isazeroof Fy, - - -, F,.

The uniqueness of the f;’ shows that (1) and (2) are identical.
Hence (1) annuls 2, and, in particular, it annuls P. We have thus
obtained a contradiction. This completes the proof of our statement
concerning the zeros of Fy, - - -, F,.

Now let ¥ be a difference field and 4 a polynomial of {1, - - -, ¥.}.
We shall prove the theorem stated at the beginning of this note.
We may suppose that a transform of some y;, say of y,, appears
effectivelyin 4. Let y;,=ay,2=1, - - -, n, be a zero of 4. It will suffice
to assume that the «; are not a zero of the y,-separant of 4 and show
that this implies that only one component of the manifold of 4 con-
tains the ;.

It is evident that the a; must annul just one irreducible factor, say
F, of A, and do not annul the y,-separant of F. Hence we need merely
show that the a; are contained in only one component of the manifold
of F. We shall suppose that this is not so and obtain a contradic-
tion. We assume first that F is of equal order and effective order in y,.

Let 91, and 91, denote two distinct components of the manifold of
F, each containing the «;. Let Z; and Z, denote the corresponding re-
flexive prime difference ideals. We denote by % the order of F in y.,.
Since the @; do not annul the y,-separant of F, yy, - - -, ya—1 constitute
a parametric set for both Z; and Z;, and these ideals are both of order
kin y,.

We choose an integer m such that the first m+1 polynomials of a
characteristic sequence of Z; do not constitute the beginning of a
characteristic sequence of Z,. Let Z,, and 2,, denote the sets con-
sisting of those polynomials of 2, and Z, respectively which involve
the y.k, 0Sk<m-+h, and a finite subset .S of the y;;, i<n. S is to
include all those y;;, 7<%, which appear effectively, or whose trans-
forms appear effectively, in F, Fy, - - -, Fn or in the first m41 poly-
nomials of a characteristic sequence of Z, or in the first m+41 poly-
nomials of a characteristic sequence of Z,.

Sim and 2, may be regarded as primegp.i.’s in the jring
F[S, Y0, Yats * * =y Yn.min). The y;; of S and the yui, £ <h, constitute
a parametric set for both Z;, and Zy.. Let s denote the number of
indeterminates in this parametric set.

Our earlier result concerning polynomial ideals shows that there is
a unique component N of the manifold of {F, F, - - -, Fm}o, re-
garded as an ideal of F[S, Yn0, ¥u1, * * * , Yn.mss), which contains the
zero ¥;; =ay; of this ideal. The dimension of M is s, for s corresponds to
g of the earlier proof.

Now both 2, and Z,,, contain {F , Fy, - - e, F,,.} 0, while both have
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the zero y;;=a;;. Hence their manifolds are in 9. Since their mani-
folds are of dimension s, however, they must coincide with A(. Hence
21m and 2, are identical. But m was chosen so that 2;,, contains a
polynomial which is not in Zpn, namely one of the first m+1 poly-
nomials of a characteristic sequence of Z;. We have obtained a
contradiction. This completes the proof of the theorem in the case
that F is of equal order and effective order in y,.

If the order of Fin y, exceeds its effective order by d >0, we replace
each y,: in F by 2., where 2 is a new indeterminate, and subscripts
attached to z denote transforming. F goes into an irreducible poly-
nomial F which is of equal order and effective order in z.

Evidently each component 2 of the manifold of F corresponds to
a unique component N of the manifold of F, and, conversely, each
component of the manifold of F is obtained from a unique com-
ponent of the manifold of F. The correspondence may be described
as follows: each solution in 2 is obtained from a solution in 9T by
leaving unchanged the elements assigned as values to y1, - - -, ya_1,
and assigning to v, an element whose dth transform is the element
assigned as the value of z in (. This correspondence carries solutions
common to two components of the manifold of F into solutions com-
mon to two components of the manifold of F. Solutions annulling the
Ya-separant of F correspond to solutions annulling the z-separant of
F.

The preceding proof shows that the theorem stated at the begin-
ning of this note holds for F. The correspondence just described
shows that its truth for F implies its truth for F. Hence it is true in
general.
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