COHOMOLOGY IN ABSTRACT UNIT GROUPS

YUKIYOSI KAWADA

- A. H. Clifford and S. MacLane [2] considered in 1941 the group of factor-sets $H^2(\Gamma, U)$ of a finite group Γ over its abstract unit group U. They proved the main theorem to the effect that $H^2(\Gamma, U)$ is isomorphic to the multiplicator M of Γ defined by I. Schur and also several other theorems under the assumption that Γ is a solvable group. They conjectured that these should hold for general finite groups Γ . In 1942 A. Weil proved the main theorem for general finite groups Γ , but this result was not published. In this short note we shall prove that all the theorems in [2] are valid for general finite groups Γ , and also we shall extend their results for all (positive, zero, and negative) dimensional cohomology groups. 2
- 1. We shall first prove a general lemma on cohomology groups. Let Δ be a finite group, and let E be a Δ -module. Suppose that A_1 , A_2 are two Δ -submodules which are disjoint: $A_1 \cap A_2 = 0$. Then we have the following commutative diagram such that each row and each column are exact:

Let us denote, in general, by $H^r(\Delta, A)$ the r-cohomology group of a group Δ over a Δ -module A.

LEMMA. Assume that $H^r(\Delta, E) = 0$ for $r = 0, \pm 1, \pm 2, \cdots$. Then we have for all $r = 0, \pm 1, \pm 2, \cdots$,

Received by the editors April 1, 1954.

¹ The author wishes to express his thanks to Professor Saunders MacLane who kindly told him this fact and allowed him to read an unpublished manuscript about it.

² For the definition of negative dimensional cohomology groups of a finite group and for the properties of cohomology groups see, for example, Artin-Tate [1].

(I)*
$$H^{r}(\Delta, E/A_1) \stackrel{\delta}{\cong} H^{r+1}(\Delta, A_1) \stackrel{j^*}{\cong} H^{r+1}(\Delta, (A_1 + A_2)/A_2),$$

(II)* $0 \rightarrow H^{r}(\Delta, E/A_2) \stackrel{j^*}{\rightarrow} H^{r}(\Delta, E/(A_1 + A_2))$

and similar formulas hold by interchanging the subscripts 1 and 2,

(III)*
$$H^r(\Delta, E/(A_1 + A_2)) = j_{23}^*(H^r(\Delta, E/A_1)) + j_{13}^*(H^r(\Delta, E/A_2)).$$

PROOF. (i) (I)* is evident by our assumption $H^r(\Delta, E) = 0$. (ii) Since $(i_{13})^* = (j_{22})^* \circ (i_{12})^* \circ (j_{21}^{-1})^*$ and $(i_{12})^* = 0$ by our assumption, we have $(i_{13})^* = 0$. Hence we get (II)* by the exact sequence of cohomology groups derived from the 3rd column of the diagram (1). (iii) From (1) follows

$$0 \longrightarrow H^{r}(\Delta, E/A_{2}) \xrightarrow{\delta_{1}} H^{r+1}(\Delta, A_{2}) \xrightarrow{i^{*}_{22}} 0$$

$$(2) \qquad \qquad \downarrow j^{*}_{13} \qquad \downarrow j^{*}_{11} \qquad \stackrel{*}{\underset{i^{*}_{23}}{\longrightarrow}} 0$$

$$0 \longrightarrow H^{r}(\Delta, E/A_{1}) \xrightarrow{j_{23}} H^{r}(\Delta, E/(A_{1}+A_{2})) \xrightarrow{\delta_{2}} H^{r+1}(\Delta, (A_{1}+A_{2})/A_{1}) \xrightarrow{i_{23}} 0.$$

Here j_{13}^* is an into-isomorphism and δ_1 , j_{11}^* are onto-isomorphisms. Hence $j_{13}^*(H^r(\Delta, E/A_2))$ is a splitting system of representatives of $H^r(\Delta, E/(A_1+A_2))$ mod $j_{23}^*(H^r(\Delta, E/A_1))$. This proves (III)*, q.e.d.

2. Let Γ be a finite group of order n, and $\Gamma(Z)$ be its group ring over the integers Z. Put $u = \sum_{\sigma \in \Gamma} \sigma \in \Gamma(Z)$. Then by definition the factor group $U = \Gamma(Z)/Zu$ is the abstract unit group of Γ . Now let Δ be an arbitrary subgroup of Γ . Let us take $E = \Gamma(Z)$, $A_1 = \sum_{\sigma \neq 1} Z(1-\sigma)$, and $A_2 = Zu$. Clearly $A_1 \cap A_2 = 0$. Since $E = \Gamma(Z)$ is Δ -free, the assumption in the lemma is satisfied. Hence we can apply the lemma. Here we may identify $E/A_1 = Z$ and $j_{12} = \operatorname{tr}$, where $\operatorname{tr} \left(\sum_{\sigma} a_{\sigma} \cdot \sigma\right) = \sum_{\sigma} a_{\sigma} \in Z$ $(a_{\sigma} \in Z)$. Then the 3rd row of the diagram (1) may be replaced by

$$0 \rightarrow nZ \xrightarrow{i_{23}} Z \xrightarrow{j_{23}} Z/nZ \rightarrow 0$$

where Δ operates on these modules trivially. Also j_{13} and j_{11} become the homomorphism tr induced in $U (\rightarrow Z/nZ)$ and $Zu (\rightarrow nZ)$ respectively. Finally put $U_0 = (A_1 + A_2)/A_2$, which is the kernel of the mapping $\mathrm{tr} U \rightarrow Z/nZ$. By these substitutions we have the following formulas from our lemma:

For all $r=0, \pm, \pm 2, \cdots$

$$(I)_1 \quad H^r(\Delta, U) \stackrel{\delta}{\cong} H^{r+1}(\Delta, Z),$$

$$(\mathrm{I})_2 \quad H^{r-1}(\Delta, Z) \stackrel{j_{21}^* \cdot \delta}{\cong} H^r(\Delta, U_0),$$

$$(\mathrm{II})_1 \quad 0 \longrightarrow H^r(\Delta, \ U) \stackrel{\mathrm{tr}^*}{\longrightarrow} H^r(\Delta, \ Z/nZ) \stackrel{\delta}{\longrightarrow} H^{r+1}(\Delta, \ U_0) \stackrel{i^*}{\longrightarrow} 0 \quad (exact),$$

$$(II)_2 \quad 0 \to H^r(\Delta, Z) \stackrel{i^*}{\to} H^r(\Delta, Z/nZ) \stackrel{\delta}{\to} H^{r+1}(\Delta, nZ) \stackrel{i^*}{\to} 0 \quad (exact),$$

(III)
$$H^r(\Delta, Z/nZ) = j_{23}^*(H^r(\Delta, Z)) + \operatorname{tr}^*(H^r(\Delta, U)),$$

where Δ operates trivially on Z, nZ and Z/nZ.

Now we get several theorems in [2] as corollaries of these formulas. Namely, from $(1)_2$ follows

- (i) $H^0(\Delta, U_0) \cong H^{-1}(\Delta, Z) = 0$; $H^1(\Delta, U_0) \cong H^0(\Delta, Z) \cong \mathbb{Z}/m\mathbb{Z}$ where m is the order of Δ ; $H^2(\Delta, U_0) \cong H^1(\Delta, Z) = 0$ (formulas (1), (2) in §6 and corollary in §1 of [2]). From (II)₁ follows
- (ii) tr*: $H^2(\Delta, U) \rightarrow H^2(\Delta, Z/nZ)$ is an into-isomorphism (Theorem 1.A of [2]),
 - (iii) $i^*(H^1(\Delta, U_0)) = 0$ in $H^1(\Delta, U)$ (Theorem 1.B of [2]).

From (II)₁ and $H^2(\Delta, U_0) = 0$ follows

- (iv) tr*: $H^1(\Delta, U) \rightarrow H^1(\Delta, Z/nZ)$ is an onto-isomorphism (Theorem 2.B of [2]).
- 3. Let Ω be an algebraically closed field of characteristic not dividing the order n of Γ . Then the multiplicator M of Γ is defined by I. Schur as $M = H^2(\Gamma, \Omega^*)$, where Γ acts trivially on the multiplicative group Ω^* . Let W be the group of all the roots of unity in Ω . Consider the exact sequence $1 \rightarrow W \rightarrow \Omega^* \rightarrow \Omega^*/W \rightarrow 1$. Since the group Ω^*/W is uniquely divisible, so $H^r(\Delta, \Omega^*/W) = 0$ for all r. Hence we have $M = H^2(\Gamma, \Omega^*) \cong H^2(\Gamma, W) \cong H^2(\Delta, Q/Z)$, where Q is the additive group of rationals. Let the homomorphism aver. (=average) be defined on $\Gamma(Z)$ by

aver.
$$\left(\sum_{\sigma} a_{\sigma} \cdot \sigma\right) = \frac{1}{n} \sum_{\sigma} a_{\sigma} = \frac{1}{n} \operatorname{tr} \left(\sum_{\sigma} a_{\sigma} \cdot \sigma\right) \in Q.$$

This homomorphism aver. induces also the homomorphism aver.: $U\rightarrow Q/Z$. A. Weil proved the main theorem in [2] for general Γ in the form:

(v) aver.*: $H^2(\Gamma, U) \rightarrow H^2(\Gamma, Q/Z)$ is an onto-isomorphism. For the sake of completeness we shall give here a proof which is essentially the same as that of A. Weil. Let us consider the commutative diagram:

$$\begin{array}{cccc} 0 \to Zu \to \Gamma(Z) \to & U & \to 0 \\ & & \downarrow \phi_1 & \downarrow \phi_2 & \downarrow \phi_3 \\ 0 \to & Z & \to & Q & \to Q/Z \to 0 \end{array}$$

where ϕ = aver. Since $H^r(\Delta, Q) = H^r(\Delta, \Gamma(Z)) = 0$ for all r, this diagram induces the commutative diagram:

(5)
$$\begin{aligned} 0 &\to H^{r}(\Delta, \ U) &\stackrel{\delta_{1}}{\to} H^{r+1}(\Delta, Zu) \to 0 \\ &\downarrow \phi_{3}^{*} &\downarrow \phi_{1}^{*} \\ 0 &\to H^{r}(\Delta, \ Q/Z) &\stackrel{\delta_{2}}{\to} H^{r+1}(\Delta, \ Z) &\to 0. \end{aligned}$$

Here ϕ_1^* is an onto-isomorphism, so is $\phi_3^* = \delta_2^{-1} \circ \phi_1^*$ o δ_1 . Hence we get (IV) aver.*: $H^r(\Delta, U) \rightarrow H^r(\Delta, Q/Z)$ is an onto-isomorphism for all r. The relation between tr* and aver.* on $H^r(\Delta, U)$ is given as follows. Let ψ be the homomorphism defined by $\psi(\alpha) = \alpha \times (1/n)$ on $Z(\rightarrow Q)$, $nZ(\rightarrow Z)$ and $Z/nZ(\rightarrow Q/Z)$ respectively. Then we have aver. $= \psi$ o tr, and ψ induces the homomorphism: $H^r(\Delta, Z/nZ)^{\psi*} \rightarrow H^r(\Delta, Q/Z)$. Then we have

(V) $\psi^* \circ j_{23}^*(H^r(\Delta, Z)) = 0$ and ψ^* is an isomorphism of $\operatorname{tr}^*(H^r(\Delta, U))$ onto $H^r(\Delta, Q/Z)$.

PROOF. Let us consider the commutative diagram:

$$0 \to nZ \xrightarrow{i_1} Z \xrightarrow{i_1} Z/nZ \to 0$$

$$\downarrow \psi_1, \quad \downarrow \psi_2, \quad \downarrow \psi_3$$

$$0 \to Z \xrightarrow{i_2} Q \xrightarrow{i_2} Q/Z \to 0.$$

Since $(\psi_2)^*=0$ by $H^r(\Delta, Q)=0$, we have $\psi_3^*\circ j_1^*=j_2^*\circ \psi_2^*=0$. Since $\phi_3^*=\psi_3^*\circ j_{13}^*$ and $\phi_3^*(j_{13}^*)$ is an isomorphism-onto (-into), so ψ_3^* is an onto-isomorphism, q.e.d. These considerations actually cover Theorem 2.A of [2].

REFERENCES

- 1. E. Artin and J. Tate, Algebraic functions and algebraic numbers, Lecture notes at Princeton University, vol. 2, to be published.
- 2. A. H. Clifford and S. MacLane, Factor-sets of a group in its abstract unit group, Trans. Amer. Math. Soc. vol. 50 (1941) pp. 385-406.

THE INSTITUTE FOR ADVANCED STUDY AND UNIVERSITY OF TOKYO