
COHOMOLOGY IN ABSTRACT UNIT GROUPS

YUKIYOSI KAWADA

A. H. Clifford and S. MacLane [2] considered in 1941 the group of

factor-sets H2(Y, U) of a finite group T over its abstract unit group

U. They proved the main theorem to the effect that H2(T, U) is

isomorphic to the multiplicator M of T defined by I. Schur and also

several other theorems under the assumption that T is a solvable

group. They conjectured that these should hold for general finite

groups r. In 1942 A. Weil proved the main theorem for general finite

groups r, but this result was not published.1 In this short note we

shall prove that all the theorems in [2] are valid for general finite

groups r, and also we shall extend their results for all (positive, zero,

and negative) dimensional cohomology groups.2

1. We shall first prove a general lemma on cohomology groups. Let

A be a finite group, and let £ be a A-module. Suppose that Ai, A2

are two A-submodules which are disjoint: AiP\A2 = 0. Then we have

the following commutative diagram such that each row and each

column are exact:

0 0

1 . 1
0 —->   Ai   -^(Ai + A2)/A2-r0

1 . I in i in
t22                     i22

(1) 0-►  Ax  -►    E    —-►    E/A2    ->0

I in       .       1 y 12 . lji%

0^(Ai + A2)/Ai->E/Ai±-+E/(Ai + A2) -> 0

4- 4- 4'

000

Let us denote, in general, by Hr(A, A) the r-cohomology group of a

group A over a A-module A.

Lemma. Assume that Hr(A, E) =0 for r=0, ±1, ±2, • • • . Then we

have for all r = 0, +1, +2, • ■ • ,
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1 The author wishes to express his thanks to Professor Saunders MacLane who

kindly told him this fact and allowed him to read an unpublished manuscript about it.

1 For the definition of negative dimensional cohomology groups of a finite group

and for the properties of cohomology groups see, for example, Artin-Tate [l].
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5 j*
(I)*    H'(A, E/Ai) S H^(A, Ai) S H*\A, (Ai + A2)/A2),

(II)* 0 ->• H'(A, E/A2) ̂  H'(A, E/(Ai + .40)

8 i*
-> ZP^fA, (^i + A2)/A2) ->• 0 (exoci)

awd similar formulas hold by interchanging the subscripts 1 and 2,

(III)*   H'(A, E/(Ai + A2))= j*23(H'(A, E/Ai)) + jn(H'(A, E/A2)).

Proof, (i) (I)* is evident by our assumption Hr(A, E) =0. (ii) Since

(*«)* = (j'22)* o (t"i2)*o (J21)* and (ii2)* = 0 by our assumption, we

have (iiz)* =0. Hence we get (II)* by the exact sequence of cohomol-

°gy groups derived from the 3rd column of the diagram (1). (iii)

From (1) follows

•*
01 t22

0 -► H'(A, E/A2)-►   H^A, Ai)    -► 0

(2) .* Ijn I in .*

0-+tf'(A, E/Ai)3-^ H'(A, E/(Ai+A2)) 4 H*+\A, (Al+AJ/AA *" 0.

Here j*3 is an into-isomorphism and Si, jn are onto-isomorphisms.

Hence j1^(Hr(A, E/A2)) is a splitting system of representatives of

H"(A, E/(Ai+A2)) mod Ji*3(H'(A, E/A)). This proves (III)*, q.e.d.

2. Let r be a finite group of order w, and Y(Z) be its group ring

over the integers Z. Put u= ]C»er <rEY(Z). Then by definition the

factor group U = Y(Z)/Zu is the abstract unit group of Y. Now let A

be an arbitrary subgroup of Y. Let us take E=T(Z), Ai

— 22'*i Z(l—<r), and A2=Zu. Clearly Aif~\A2 = 0. Since E=Y(Z) is
A-free, the assumption in the lemma is satisfied. Hence we can

apply the lemma. Here we may identify E/Ai=Z and ji2 = tr, where

tr ( 22" a,-cr) = 22° acEZ (a„EZ). Then the 3rd row of the diagram
(1) may be replaced by

^•23       723

(3) 0 -> nZ -> Z J-+ Z/nZ -» 0

where A operates on these modules trivially. Also jn and jn become

the homomorphism tr induced in U (-^>Z/nZ) and Zu (-^nZ) re-

spectively. Finally put Uo = (Ai-r-A2)/Ai, which is the kernel of the

mapping trU—>Z/nZ. By these substitutions we have the following

formulas from our lemma:

For allr=0, ±, ±2, • • •
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(I),    H*(A,U)*iH«-KA,Z),

(I),    H^(A,Z)%   H'(A,Uo),

tr* 8 i*
(II)i   0 -> Hr(A, U) -* H*(A, Z/nZ) -> iff •+»(£, U0) -> 0 (exact),

(II)2   0 -> ZP(A, Z) ^* jy(A, Z/nZ) -+ H^A, nZ) ^ 0 (exact),

(III)   H*(A,Z/nZ) = j*2i(W(A,Z)) + tr* (#'(A, £7)),

where A operates trivially on Z, nZ and Z/nZ.

Now we get several theorems in [2] as corollaries of these formulas.

Namely, from (I)2 follows

(i) H>(A, Uo)^H~1(A,Z)=0;H1(A, Uo)^H°(A, Z)^Z/mZ where

m is the order of A; H2(A, Uo)^H1(A, Z)=0 (formulas (1), (2) in §6

and corollary in §1 of [2]). From (II)i follows

(ii) tr*: H2(A, U)—>H2(A, Z/nZ) is an into-isomorphism (Theorem

l.Aof [2]),
(iii) i*(W(A, U0))=0 in W(A, U) (Theorem LB of [2]).

From (II)! and fl*(A, U0) =0 follows

(iv) tr*: H^A, U)-^HX(A, Z/nZ) is an onto-isomorphism (Theorem

2.B of [2]).

3. Let fi be an algebraically closed field of characteristic not divid-

ing the order ra of Y. Then the multiplicator M of V is defined by

I. Schur as M = H2(V, fi*), whereT acts trivially on the multiplicative

group fi*. Let IF be the group of all the roots of unity in fi. Consider

the exact sequence 1—->1F—>fi*—>fi*/IF—>1. Since the group fi*/IF

is uniquely divisible, so Hr(A, fi*/IF)=0 for all r. Hence we have

M = H2(T, tt*)^H2(T, W)^H2(A, Q/Z), where Q is the additive

group of rationals. Let the homomorphism aver. (= average) be de-

fined on T(Z) by

aver. ( 22 a**) = — 22a« = — tr ( E^'") £ Q-
\<r /       «   , n       \  , /

This homomorphism aver, induces also the homomorphism aver.:

U-+Q/Z. A. Weil proved the main theorem in [2] for general V in

the form:
(v) aver.*: H2(T, U)-^>H2(T, Q/Z) is an onto-isomorphism. For

the sake of completeness we shall give here a proof which is essentially

the same as that of A. Weil. Let us consider the commutative dia-

gram:
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0 -> Zu -» T(Z) ->   f/   -+ 0

(4) |*1 |«2 1*3

o-> z -* e -+e/z->o

where </>= aver. Since iP(A, (2) =£Tr(A, T(Z)) =0 for all r, this diagram

induces the commutative diagram:

«i
0->  H'(A,U)   -->Hr+l(A,Zu)->>0

(5) Ut     s l<t>*i
0 -* H'(A, Q/Z) 4 tf h-i(A, Z) -* 0.

Here 0* is an onto-isomorphism, so is <p* = 52_1 o </>* o Si. Hence we get

(IV) aver.*: Hr(A, U)—+Hr(A, Q/Z) is an onto-isomorphism for all r.

The relation between tr* and aver.* on HT(A, U) is given as follows.

Let yp be the homomorphism defined by yp(a) =aX(l/n) on Z(—>Q),

nZ(—>Z) and Z/wZ(—>Q/Z) respectively. Then we have aver. =ift o tr,

and \p induces the homomorphism: HT(A, Z/wZ)**—>iP(A, Q/Z).

Then we have

(V) yp*ojtz(Hr(A,Z))=0and\p* is an isomorphism of'tr* (HT(A, U))

onto Hr(A, Q/Z).

Proof. Let us consider the commutative diagram:

0 -» nZ 4 Z 4 Z/nZ -* 0

14>i.   14>*      1^3
i2       i2

0 -> Z  -> (2 -» Q/Z -» 0.

Since (^2)* = 0 by iP(A, 0 =0, we have #f o j*=j* o ift* = 0. Since
0*=^* °i*3 and 0* (j'*3) is an isomorphism-onto (-into), so \p* is an

onto-isomorphism, q.e.d. These considerations actually cover Theo-

rem 2.A of [2].
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