THE EXISTENCE OF OUTER AUTOMORPHISMS OF SOME NILPOTENT GROUPS OF CLASS 2

EUGENE SCHENKMAN1

In a recent conversation with F. Haimo the question arose as to whether a nilpotent group always possesses an outer automorphism. The object of this note is to show that the answer is in the affirmative for certain nilpotent groups of class 2 and also to show that if the group is finite but not Abelian, then for all primes p when p^k divides the group order it also divides the order of the group of automorphisms.

Some preliminary remarks. We let G' stand for [G, G] the commutator subgroup of G; i.e. the group generated by all commutators $[a, b] = aba^{-1}b^{-1}$ where a and b are elements of G; and also note that nilpotent of class 2 means that G' is in the center of G. From this last fact we readily obtain

$$[a, bc] = [a, b][a, c],$$

(1b)
$$[ab, c] = [a, c][b, c],$$

(1c)
$$[a^m, b^n] = [a, b]^{mn},$$

(1d)
$$[a, b] = [b, a]^{-1}$$
.

E will denote the identity subgroup, e the identity element of G. We let G(n) denote the subgroup of G generated by the nth powers of the elements of G and assume that for some prime p there is an integer k such that $G(p^k) \subset G'$.

We shall begin with some general results probably well known (cf. for instance [1]), but we have included the proofs for completeness.

THEOREM A. If G is an Abelian group such that, for some prime p and integer k, $G(p^k) = E$, then G is the direct product of cyclic groups.

PROOF. If k=1 the theorem is true since G is a vector space over the field of p elements. We proceed by induction on k assuming that G(p) is a direct product of cyclic groups, $G(p) = \prod \otimes (x_{\alpha})$ where (x_{α}) designates the cyclic group generated by x_{α} .

Let y_{α} be such that $y_{\alpha} = x_{\alpha}^{1/p}$. Then the y_{α} generate a group G_1 which is a direct product, $G_1 = \prod \otimes (y_{\alpha})$. For $\prod y_{\alpha}^{n_{\alpha}} = e$ implies that $\prod y_{\alpha}^{pn_{\alpha}} = \prod x_{\alpha}^{n_{\alpha}} = e$ whence $x_{\alpha}^{n_{\alpha}} = e$ for all α , and hence n_{α} is a positive power

Presented to the Society, April 23, 1954; received by the editors March 2, 1954.

¹ This research was supported by the U. S Air Force under contract number AF 18(600)-790 monitored by the Office of Scientific Research.

of p; it follows that $\prod x_{\alpha}^{n_{\alpha}/p} = e$, whence $x_{\alpha}^{n_{\alpha}/p} = e$, and finally $y_{\alpha}^{n_{\alpha}} = e$. Now let G_0 be the maximum subgroup of G such that $G_0(p) = E$; then there is a subgroup $Q = \prod \otimes z_{\beta}$ such that $G_0 = (G_0 \cap G_1) \otimes Q$ and finally $G = G_1 \otimes Q = (\prod \otimes y_{\alpha}) \otimes (\prod \otimes z_{\beta})$ as can readily be verified.

By a similar method of proof we can obtain the following result.

THEOREM B. If G is Abelian, $G(p^k) = E$, and if g_1, \dots, g_n are not in G(p) and if the group they generate is a direct product $(g_1) \otimes \cdots \otimes (g_n)$, then there is an H such that $G = H \otimes (g_1) \otimes \cdots \otimes (g_n)$.

Letting as usual $\Phi(G)$ denote the intersection of all maximal subgroups of G, we have the following result.

THEOREM C. If G is nilpotent such that $G(p^k) \subset G'$, then $\Phi(G) = \{G', G(p)\}$, the subgroup of G generated by G' and G(p).

PROOF. $\Phi(G) \supset G'$ by Theorem 12, p. 114, of [3] and by the same type of argument $\Phi(G) \supset G(p)$. On the other hand if g is not in $\{G', G(p)\}$, then by Theorem B there is a maximal subgroup of G not containing g, and hence g is not in $\Phi(G)$.

Some lemmas on automorphisms.

LEMMA 1. If M and H are subgroups of G so that for $m \in M$, $h \in H$, [m, h] = e, and if G = MH, then any automorphism σ of H which leaves $M \cap H$ elementwise fixed can be extended to be an automorphism of G.

PROOF. If g is in G then g=mh where $m \in M$, $h \in H$, and g^{σ} will be defined to be mh^{σ} . This defines g^{σ} uniquely; for if $g=m_1h_1=m_2h_2$, then $m_2^{-1}m_1=h_2h_1^{-1}=(h_2h_1^{-1})^{\sigma}=h_2^{\sigma}(h_1^{-1})^{\sigma}$ whence $m_1h_1^{\sigma}=m_2h_2^{\sigma}$.

We next check that $(m_1h_1)^{\sigma}(m_2h_2)^{\sigma} = (m_1h, m_2h_2)^{\sigma}$. This can be seen since the left member reduces to $m_1h_1^{\sigma}m_2h_2^{\sigma} = m_1m_2h_1^{\sigma}h_2^{\sigma}$ and the right member to $(m_1m_2h_1h_2)^{\sigma} = m_1m_2h_1^{\sigma}h_2^{\sigma}$.

LEMMA 2. If M is a normal subgroup of an arbitrary group so that the coset aM is of order n and so that G = M(a), and if z in M is in the center of G such that $z^n = e$, then the mapping σ defined by the rule $(ma^r)^{\sigma} = ma^rz^r$ is an automorphism of G.

The verification is left to the reader.

In what follows we let G' be in the center of G and let G be generated by a, b, c, \dots, f such that G/G' is the direct product of (aG'), $(bG'), \dots, (fG')$ whose orders are k_a, k_b, \dots, k_f , so that every element of G is expressed uniquely as $wa^{r_a}b^{r_b} \dots f^{r_f}$ where $w \in G'$ and $0 \le r_a < k_a, \dots, 0 \le r_f < k_f$. We then have the following result.

LEMMA 3. If z commutes with b, c, \dots, f and the order of az is the

same as the order of a, then the mapping σ sending $g_1 = w_1 a^{\tau_a} \cdot \cdot \cdot \cdot f^{\tau_f}$ into $w_1(az)^{\tau_a} \cdot \cdot \cdot \cdot f^{\tau_f}$ is an automorphism of G.

PROOF. Clearly G' is left elementwise fixed by σ . If now $g_2 = w_2 a^{s_a} \cdot \cdot \cdot f^{s_b}$, then $g_1 g_2 = w_1 w_2 [b^{r_b} \cdot \cdot \cdot f^{r_f}, a^{s_a}] a^{r_a + s_a} b^{r_b} \cdot \cdot \cdot f^{r_f} b^{s_b} \cdot \cdot \cdot f^{s_f}$; and $(g_1 g_2)^{\sigma} = w_1 w_2 [b^{r_b} \cdot \cdot \cdot f^{r_f}, a^{s_a}] (az)^{r_a + s_a} b^{r_b} \cdot \cdot \cdot f^{r_f} b^{s_b} \cdot \cdot \cdot f^{s_f}$. But

$$g_1^{\sigma}g_2^{\sigma} = w_1(az)^{r_a}b^{r_b}\cdots f^{r_f}w_2(az)^{s_a}b^{s_b}\cdots f^{s_f}$$

$$= w_1w_2[b^{r_b}\cdots f^{r_f}, (az)^{s_a}](az)^{r_a+s_a}b^{r_b}\cdots f^{r_f}b^{s_b}\cdots f^{s_f}$$

and hence σ is an automorphism since $[b^{rb} \cdot \cdot \cdot f^{rf}, a^{sa}] = [b^{rb} \cdot \cdot \cdot f^{rf}, (az)^{sa}]$ by the assumption on z and by (1a) and (1c).

LEMMA 4. Let $\Phi(G)$ be the Φ subgroup of the finite p-group G and let A be the group of automorphisms of G. Then the normal subgroup N (cf. [3, p. 48]) of A of all the automorphisms leaving every coset of G with respect to $\Phi(G)$ fixed is a p-group.

PROOF. There is a series of characteristic subgroups of G, $G = G_1, G_2, \dots, G_n \neq E, G_{n+1} = E$, such that G_{i+1} is the group generated by $[G_{i_0}, G]$ and $G_i(p)$ where i_0 is the largest number less than or equal to i so that G_{i_0} is a member of the descending central series.

Now let σ be an automorphism of G so that $a^{\sigma} = a\phi_a$ where $\phi_a \in \Phi(G)$. Then since $\Phi(G) = G_2$ by Theorem C, the Φ subgroup of G/G_n is Φ/G_n and hence by an induction argument there is a power of p, namely p^k , so that $a^{\sigma p^k} = az_a$ where z_a is in G_n . But if τ is any automorphism of A so that $a\tau = az_a$ with z_a in G_n and hence in the center of G, then $\tau^p = 1$; for z_a is a product of commutators and pth powers and hence $z_a^{\tau} = z_a$ since each commutator and each pth power is fixed under τ as is readily checked. Hence $a^{\tau p} = a$ and $\sigma^{p^{k+1}} = 1$. Thus every element of N is of p-power order and the lemma is proved.

The main theorems.

THEOREM 1. If G is a finite non-Abelian group of prime power order whose commutator subgroup is in the center, then the order of G divides the order of the group of automorphisms of G.

PROOF. Let a, b, \dots, f be generators of G with the properties stated in connection with Lemma 3, and so arranged that $[a, b] = w_1$ is an element of maximum order m_1 in G'. Let w_1, \dots, w_n of orders m_1, \dots, m_n be a basis for G' so chosen that $m_1 \ge m_2 \ge m_i$ for $i = 3, \dots, n$. Then the order of G is $m_1 m_2 \dots m_n k_n \dots k_f$.

Now if d is one of the chosen generators and if m_1 divides k_d , then for w in G' the map sending $g = wa^{r_a} \cdot \cdot \cdot \cdot d^{r_d} \cdot \cdot \cdot \cdot f^{r_f}$ into $wa^{r_a} \cdot \cdot \cdot \cdot (d \cdot d^{tm_1})^{r_d} \cdot \cdot \cdot f^{r_f}$ for $t = 0, 1, \dots, k_d/m_1$ is an automorphism by

Lemma 3 which leaves the subgroup (d) invariant. There are k_d/m_1 such automorphisms for the generator d.

By Lemma 2 there is an automorphism sending $wa^{r_a} \cdots d^{r_d} \cdots f^{r_f}$ into $wa^{r_a} \cdots (dw_j^{uq_j})^{r_d} \cdots f^{r_f}$ where $q_j = \max(1, m_j/k_d)$ and $u = 0, 1, \dots, m_j/q_j$. There are min (k_d, m_j) such automorphisms for the generator d and for $j = 1, \dots, n$.

We note now that c, \dots, f can be so chosen that they commute with a and b modulo $(w_2) \otimes \dots \otimes (w_n)$. For if d is one of the generators c, \dots, f suppose $[a, d] \equiv [a, b]^s$ and $[d, b] \equiv [a, b]^t$ modulo $(w_2) \otimes \dots \otimes (w_n)$. Then $[a, db^{m_1-s}a^{m_1-t}] \equiv e \equiv [db^{m_1-s}a^{m_1-t}, b]$ and $db^{m_1-s}a^{m_1-t}$ can replace d as the generator with the required property.

Now if $q = \max (p, k_b/k_a, m_2)$, then b^q commutes with b, c, \dots, f ; then for $u = 0, 1, \dots, k_b/q$ there are k_b/q elements ab^{uq} and since the orders of these are powers of p between k_a and k_am_1 , there are h+1 possibilities for the orders where $p^h = m_1$. Hence by replacing a by one of the ab^{uq} if necessary there are by Lemma 3 at least $k_b/q(h+1)$ distinct automorphisms sending $g = wa^{r_a} \cdots f^{r_f}$ into $w(ab^{uq})^{r_a} \cdots f^{r_b}$. Similarly if $r = \max (p, k_b/k_a, m_2)$, interchanging the roles of a and b there are at least $k_a/r(h+1)$ more distinct automorphisms.

All of the above automorphisms are in the normal subgroup of the group of automorphisms of G described in Lemma 4 which will then be at least of order $k_a \cdot \cdot \cdot k_f(m_2 \cdot \cdot \cdot m_n)^2 m_2 xy$ where x and y are the least powers of p greater than $k_b/q(h+1)$ and $k_a/r(h+1)$ and where $(m_2 \cdot \cdot \cdot m_n)^2 m_2$ is 1 if G^2 is cyclic.

But this order is as large as the order of G if $m_2^2 xy \ge m_1$, which is true except for $m_1 = 8$, 16, 32 and 64 when $m_2 \ge p$. For then $m_2^2 \ge m_1$ unless $m_1 \ge p^3$; but in this case $p^{(m_1)^{1/2}} > m_1 p = p^{h+1}$ whence $(m_1)^{1/2} > h+1$, $m_1/m_2 > (m_1/m_2^2)^{1/2}(h+1)$, and finally x and y being both greater than or equal to $m_1/[m_2(h+1)]$ we see that $xy \ge m_1/m_2^2$.

We consider now the case where $m_2=1$ and first let $m_1=p^{2k}$ for $k=1, 2, 3, \cdots$. Then $p^k > h+1$ (except when $m_1=4, 9$, and 16) and $p^{2k-1}/(h+1) > p^{k-1}$ whence x and y are greater than or equal to p^k and $xy \ge m_1$. Next let $m_1 = p^{2k+1}$ for $k=0, 1, 2, \cdots$; then except when $m_1=2$ or k=0 or k=0 and k=0 in the expression for one of the numbers k=0 or k=0 by 1, we can obtain one more automorphism of k=0 power order not in the subgroup of automorphisms already considered, which with that subgroup generates a k=0-group of order at least equal to that of k=0.

Hence we have proved the theorem except in the exceptional cases when $m_1=2, 4, 8, 9$, or 16 when $m_2=1$; and $m_1=8, 16, 32$, or 64 when $m_2 \ge p$.

For the proofs in these cases it is possible to apply Lemma 3. Thus for $m_1=2$, if a^2 and b^2 are in G' then two of the three elements a, b, and ab have the same order; for definiteness let them be a and ab. Then there is an automorphism of order 2 leaving b fixed and sending a into ab. If on the other hand b^2 is not in G', let n be minimal so that b^n is in G'; then two of the elements b, ba, and $b^{n-2}ba=bb^{n-2}a$ have the same order and again there is an automorphism of order 2 not in the subgroup of automorphisms previously considered. Thus the theorem follows for $m_1=2$.

When $m_1=8$ if a^8 and b^8 are in G', then two of the elements a, b, ab, ab^2 , and ab^3 have the same order and there is at least an automorphism of order 4 of the type holding b fixed and sending a into ab or ab^2 . If b^8 is not in G', then letting n be minimal so that b^n is in G' we see that two of the elements b, ba, b^3a , b^5a , and $b^{n-1}a$ have the same order and there is an automorphism of order at least 4 holding b fixed and sending ab into ab^3 or ab^5 or ab^{n-1} (i.e., a into ab^2 or ab^4 or ab^{n-2}). By a similar method, considering b, bc, bc^2 , bc^3 , and bc^4 where c is a power of a so that cG' has the same or lower order than bG', it is possible to find an automorphism of order at least 2 so that a is fixed. Then the group consisting of these automorphisms together with those previously described has order at least equal to that of G, proving the theorem when $m_1=8$.

We omit the details of the few remaining cases since no new ideas are involved.

COROLLARY. If G is a finite non-Abelian group whose commutator subgroup is in the center, then the order of G divides the order of the group of automorphisms of G.

THEOREM 2. If G is a p-group, if G' is in the center of G, and $G(p^k)$ $\subset G'$, then G has an outer automorphism.

PROOF. We shall assume to the contrary that all the automorphisms of G are inner and on the basis of this assumption will exhibit an outer autmorphism.

We shall suppose that k is the smallest integer such that $G(p^k) \subset G'$. Let z in G' have maximum order p^r ; then $r \leq k$ since $G(p^k) \subset G'$ implies $G'(p^k) = E$ in view of (1c).

Now let s be the smallest integer greater or equal to r so that there is a $g \oplus \Phi(G)$ such that $g^{p^s} \oplus G'$. Then by Theorem B, G = M(g) where M is normal in G and G/M has order p^s . Hence Lemma 2 asserts that there is an automorphism, which is determined by an element h since by assumption it is inner, such that [h, g] = z and [h, m] = e for $m \oplus M$. Now M can be changed if necessary so as to con-

tain h. For if M(h) contains M properly, then M(h) contains g^q for some smallest number q, and then by Theorem B, $M(h) = (g^q) \otimes (h) \otimes M_1$ and $G = (g) \otimes (h) \otimes M_1$ so that $(h) \otimes M_1$ has the desired property.

Now h is not in $\Phi(G)$ since in that event, by Theorem C, h would be of the form $\prod_i h_i^p g_2$ where $g_2 \in G'$, and then by (1b) and (1c), $[h, g] = [\prod_i h_i^p g_2, g] = \prod_i [h_i, g]^p$, which would contradict the maximality of the order of z in G' since the orders of $[h_i, g]$ are at most as great as that of [h, g] = z. Hence G = N(h) where N is normal in G and G/N has order p^i . But p^i is at least equal to p^s by the choice of s and because of (1c) and the fact that z has order p^r .

Again by Lemma 2 there is a k so that, for $n \in \mathbb{N}$, [k, n] = e and $[k, h] = z^{-1}$ or [h, k] = z. Since G = M(g), $k = mg^r$ and $z = [h, k] = [h, mg^r] = [h, g]^r = z^r$ whence r = 1 and k = mg. Then G = M(g) = M(k).

Now if P is the group generated by h and k, then we shall show that P/P' is of order p^{t+s} . First $P' = P \cap G'$. For clearly $P' \subset P \cap G'$; on the other hand if $d \in P \cap G'$ then by our assumption there is an f such that [f, k] = d. But since $f = nh^r$ where n is in N, $[f, k] = [h^r, k] = [h, k]^r \in P'$. Hence $P' = P \cap G'$.

Next we observe that if P/P' is of order less than p^{r+s} , then there must be a relation of the form $h^{p^u} = k^{p^v} \mod G'$ where $t > U \ge V < S$. Then if $w = (kh^{-p^{u-v}})$, $w^{p^v} = k^{p^v}h^{-p^u} \subseteq G'$. But since [h, w] = [h, k] = z, w is not in $\Phi(G)$ for the same reason that $h \notin \Phi(G)$, and hence the existence of w contradicts the way s was chosen since v < s. We conclude that P/P' is of order p^{t+s} .

Let $Q = M \cap N$. Then, mod G', Q has index p^{t+s} in G; but P has order p^{t+s} mod G'. Furthermore $Q \cap P \subset G'$ and hence G = QP. Also $P' = P \cap G'$ so that $P' = P \cap Q$. Finally [q, p] = e for $q \in Q$, $p \in P$. Then by Theorem 1, P has an outer automorphism leaving P' elementwise fixed; this can be extended to be an automorphism of G by Lemma 1, and the proof of the theorem is completed.

It would be of interest to know whether Theorem 2 is valid if the class of nilpotency of the group is arbitrary.

BIBLIOGRAPHY

- 1. I. Kaplansky, Infinite Abelian groups, Ann Arbor, University of Michigan, 1954.
- 2. W. R. Scott, On the order of the automorphism group of a finite group, Proc. Amer. Math. Soc. vol. 5 (1954) pp. 23-24.
- 3. H. Zassenhaus, The theory of groups, trans. from the German, New York, 1949.

LOUISIANA STATE UNIVERSITY AND
THE INSTITUTE FOR ADVANCED STUDY