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In a recent conversation with F. Haimo the question arose as to

whether a nilpotent group always possesses an outer automorphism.

The object of this note is to show that the answer is in the affirmative

for certain nilpotent groups of class 2 and also to show that if the

group is finite but not Abelian, then for all primes p when pk divides

the group order it also divides the order of the group of automorph-

isms.

Some preliminary remarks. We let G' stand for [G, G] the com-

mutator subgroup of G; i.e. the group generated by all commutators

[a, b]=aba~1b~1 where a and b are elements of G; and also note that

nilpotent of class 2 means that G' is in the center of G. From this

last fact we readily obtain

(la) [a, be] = [a, b] [a, c],

(lb) [ab,c] = [a,c][b,c],

(lc) [am, bn] = [a, b]mn,

(Id) [a, b] = [b, a]~\

E will denote the identity subgroup, e the identity element of G.

We let G(n) denote the subgroup of G generated by the wth powers

of the elements of G and assume that for some prime p there is an

integer k such that G(ph) EG'.

We shall begin with some general results probably well known (cf.

for instance [l]), but we have included the proofs for completeness.

Theorem A. If G is an Abelian group such that, for some prime p

and integer k, G(pk) =E, then G is the direct product of cyclic groups.

Proof. If k = 1 the theorem is true since G is a vector space over

the field of p elements. We proceed by induction on k assuming that

G(p) is a direct product of cyclic groups, G(p) = II®(xa) where (xa)

designates the cyclic group generated by xa.

Let ya be such that ya = x]/v. Then the ya generate a group Gi which

is a direct product, Gi= II® bO- For Iiyl° = e implies that IIdC"
= Hx"a=e whence x"° = e for all a, and hence na is a positive power
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of p; it follows that J\x^/p = e, whence x^lv = e, and finally y^ = e.

Now let Go be the maximum subgroup of G such that Go(p) =E;

then there is a subgroup Q= Y\.®z» sucn tnat Go = (G0r\Gi)<8)Q and

finally G = Gi®Q = (Y]_®y«)®(Tl.®zf>) as can readily be verified.
By a similar method of proof we can obtain the following result.

Theorem B. If G is Abelian, G(pk) =E, and if gi, • ■ • , gn are not

in G(p) and if the group they generate is a direct product (gi)<3) • • •

®ign), then there is an H such that G=H®(gi)® • ■ ■ <8>(gn).

Letting as usual &(G) denote the intersection of all maximal sub-

groups of G, we have the following result.

Theorem C. // G is nilpotent such that G(pk)EG', then <I>(C7)

= {C, G(p)}, the subgroup of G generated by G' and G(p).

Proof. $(G)DG' by Theorem 12, p. 114, of [3] and by the same

type of argument &(G)Z)G(p). On the other hand if g is not in

{G', G(p)}, then by Theorem B there is a maximal subgroup of G

not containing g, and hence g is not in $(G).

Some lemmas on automorphisms.

Lemma 1. If M and H are subgroups of G so that for mEM, hEH,

[m, h]=e, and if G = MH, then any automorphism o of H which leaves

M(~\H elementwise fixed can be extended to be an automorphism of G.

Proof. If g is in G then g = mh where mEM, hEH, and g" will be

defined to be mh'. This defines g" uniquely; for if g = mihi = m2h2,

then m2~1mi = h2hi1 = (h2hi1y = ]4(hi1)" whence m-Jn\ = m2h°2.

We next check that (mihi)'(m2h2y = (mih, m2h2)°. This can be seen

since the left member reduces to mih\m2h\ = mim2h\h\ and the right

member to (mim2hih2)°=mim2h\h%.

Lemma 2. If M is a normal subgroup of an arbitrary group so that

the coset aM is of order n and so that G = M(a), and if zin M is in the

center of G such that z" = e, then the mapping cr defined by the rule

(mar)' = ma'zr is an automorphism of G.

The verification is left to the reader.

In what follows we let G' be in the center of G and let G be gener-

ated by a, b, c, ■ • • , f such that G/G' is the direct product of (aG'),

(bG'), ■ • • , (fG') whose orders are ka, kb, ■ ■ ■ , kf, so that every

element of G is expressed uniquely as waT°bTb • • • ft where wEG' and

0^r0<&0, ■ • • , 0^rf<kf. We then have the following result.

Lemma 3. // z commutes with b, c, • • • , f and the order of az is the
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same as the order of a, then the mapping a sending gi = WiaTa • • ■ fT/ into

Wi(az)ra • • • fTt is an automorphism of G.

Proof. Clearly G' is left elementwise fixed by a. If now g2 = w2a"

• • •/■',   then   gig2 = wiw2[brb ■ ■ -ft,   a"]aT°+'°b"> ■ ■ ■ fT'b"> • • •/*';

and   (gig2y = wiw2[brb ■ ■ -fr,   a"](az)"+,'bT'> ■ • ■ fT'b"> ■ ■ ■ f't.   But

gigi = wi(az)r'bri • • • fr'w2(az),'ib"> • • ■ f'f

= WiWi[bTi ■ ■ ■ fT', (az)"](az)r'+"brb ■ ■ ■ frib,b ■ ■ ■ ft

and hence a is an automorphism since [brb • • ■ frf, a"] = [brt • • • fr',

(az)"] by the assumption on z and by (la) and (lc).

Lemma 4. Let &(G) be the $ subgroup of the finite p-group G and

let A be the group of automorphisms of G. Then the normal subgroup N

(cf. [3, p. 48]) of A of all the automorphisms leaving every coset of G

with respect to $((?) fixed is a p-group.

Proof. There is a series of characteristic subgroups of G, G

= Gi,Gi, • • ■ , Gn^E, Gn+i=E, such that Gt+i is the group generated

by [Gi0, G] and Gi(p) where to is the largest number less than or equal

to i so that G,-0 is a member of the descending central series.

Now let a be an automorphism of G so that a" = a4>a where <fra E& (G).

Then since 4>(G)=G2 by Theorem C, the $ subgroup of G/Gn is

$/C7n and hence by an induction argument there is a power of p,

namely pk, so that a'*° = aza where za is in Gn. But if r is any auto-

morphism of A so that ar=aza with za in Gn and hence in the center

of G, then rp = 1; for za is a product of commutators and £th powers

and hence zTa = za since each commutator and each pth power is fixed

under t as is readily checked. Hence aT" = a and o-pl+1 = l. Thus

every element of N is of £-power order and the lemma is proved.

The main theorems.

Theorem 1. If G is a finite non-Abelian group of prime power order

whose commutator subgroup is in the center, then the order of G divides

the order of the group of automorphisms of G.

Proof. Let a, b, • • ■ , f be generators of G with the properties

stated in connection with Lemma 3, and so arranged that [a, b]=Wi

is an element of maximum order mi in G'. Let Wi, • ■ • , wn of orders

mi, • • • , mn be a basis for G' so chosen that ffii^m2^Wi for i = 3,

• ■ • , n. Then the order of G is WiW2 ■ • • mnka • • • k/.

Now if d is one of the chosen generators and if mi divides ki, then

for w in G' the map sending g = wa" ■ ■ ■ drd ■ • ■ fTf into w" • • •

(d-d'mi)ri ■ • • fr' for t = 0,  1, • ■ • ,  kd/mi is an automorphism by
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Lemma 3 which leaves the subgroup (d) invariant. There are kd/mx

such automorphisms for the generator d.

By Lemma 2 there is an automorphism sending war* ■ • • drd

• • •fTf into wa" ■ • • (dwf>)rd • • • fT' where g, = max (1, mj/kd) and

m = 0, 1, • • • , mj/qj. There are min (kd, mf) such automorphisms for

the generator d and for j = l, • ■ ■ , n.

We note now that c, • • • , f can be so chosen that they commute

with a and b modulo (w2)(& • ■ ■ ®(w„). For if d is one of the gen-

erators c, • ■ • , f suppose [a, d]= [a, b]' and [d, b]= [a, b}1 modulo

(w2)<2> ■ ■ • <S)(Wn). Then [a, dbmi-,ami-']=e=[dbml-,ami-', b] and

dbmi~'aml~' can replace d as the generator with the required property.

Now if g = max (p, kb/ka, m2), then b" commutes with b, c, • • ■ ,f;

then for w=0, 1, • ■ • , kb/q there are kb/q elements abuq and since

the orders of these are powers of p between ka and kami, there are

h + 1 possibilities for the orders where ph = mi. Hence by replacing a

by one of the abuq if necessary there are by Lemma 3 at least

kb/q(h + l) distinct automorphisms sending g = waTa • ■ ■ fr> into

w(abuq)ra • • • frb. Similarly if r = max (p, h/ka, m2), interchanging the

roles of a and b there are at least ka/r(h + l) more distinct automor-

phisms.

All of the above automorphisms are in the normal subgroup of the

group of automorphisms of G described in Lemma 4 which will then

be at least of order ka • • • k/(m2 • ■ ■ mn)2m2xy where x and y are the

least powers of p greater than kb/q(h + l) and ka/r(h + l) and where

(m2 • • • mn)2m2 is 1 if G2 is cyclic.

But this order is as large as the order of G if m\xy^mi, which is

true except for Wi = 8, 16, 32 and 64 when m2^p. For then m\^mi

unless mi^p3; but in this case p*-™^*>mip = ph+1 whence (mi)112

>h + l, mi/m2>(mi/m\)1,2(h + l), and finally x and y being both

greater than or equal to mi/[m2(h + l)] we see that xy~^mi/m\.

We consider now the case where m2 = l and first let mi=p2k for

k = l, 2, 3, • • • . Then pk>h + l (except when mi = 4, 9, and 16) and

p2k~1/(h + l)>pk~1 whence x and y are greater than or equal to pk

and xy =£t»i. Next let mi=p2k+1 for k =0, 1, 2, • • • ; then except when

mi = 2 or 8, pk+1>(h + l) and p2k+1/p(h+l)>pk~1 whence xy^mi/p.

But by replacing 1 for p in the expression for one of the numbers r,

or q by 1, we can obtain one more automorphism of p power order not

in the subgroup of automorphisms already considered, which with

that subgroup generates a £-group of order at least equal to that of G.

Hence we have proved the theorem except in the exceptional cases

when wi = 2, 4, 8, 9, or 16 when w2 = l; and Wi = 8, 16, 32, or 64 when
m2^p.
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For the proofs in these cases it is possible to apply Lemma 3. Thus

for mi = 2, if a2 and b2 are in G' then two of the three elements a, b,

and ab have the same order; for definiteness let them be a and ab.

Then there is an automorphism of order 2 leaving b fixed and sending

a into ab. If on the other hand b2 is not in G', let n be minimal so that

bn is in G'; then two of the elements b, ba, and bn~2ba = bbn~2a have

the same order and again there is an automorphism of order 2 not

in the subgroup of automorphisms previously considered. Thus the

theorem follows for r»i = 2.

When wi = 8 if a8 and bs are in G', then two of the elements a, b,

ab, ab2, and ab3 have the same order and there is at least an auto-

morphism of order 4 of the type holding b fixed and sending a into ab

or ab2. If b* is not in G', then letting n be minimal so that bn is in G'

we see that two of the elements b, ba, b3a, bba, and bn~la have the

same order and there is an automorphism of order at least 4 holding

b fixed and sending ab into ab3 or ah* or ah"*1 (i.e., a into ab2 or ab* or

abn~2). By a similar method, considering b, be, be2, be3, and be* where c

is a power of a so that cG' has the same or lower order than bG', it is

possible to find an automorphism of order at least 2 so that a is fixed.

Then the group consisting of these automorphisms together with

those previously described has order at least equal to that of G,

proving the theorem when wzi = 8.

We omit the details of the few remaining cases since no new ideas

are involved.

Corollary. If G is a finite non-Abelian group whose commutator

subgroup is in the center, then the order of G divides the order of the

group of automorphisms of G.

Theorem 2. // G is a p-group, if G' is in the center of G, and G(pk)

EG', then G has an outer automorphism.

Proof. We shall assume to the contrary that all the automorph-

isms of G are inner and on the basis of this assumption will exhibit an

outer autmorphism.

We shall suppose that k is the smallest integer such that G(pk) EG'.

Let z in G' have maximum order pr; then r^k since G(pk)EG' im-

plies G'(pk) =E in view of (lc).

Now let s be the smallest integer greater or equal to r so that

there is a g$$(G) such that gp'EG'. Then by Theorem B, G = M(g)

where M is normal in G and G/M has order p*. Hence Lemma 2

asserts that there is an automorphism, which is determined by an

element h since by assumption it is inner, such that [h, g]=z and

[h, m]=efor mEM. Now M can be changed if necessary so as to con-
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tain h. For if M(h) contains M properly, then M(h) contains gq for

some smallest number q, and then by Theorem B, M(h) = (g9) <8> (h)

® Mi and G = (g) ® (h) ® Mi so that (h) <8> Mi has the desired prop-

erty.

Now h is not in <I?(G) since in that event, by Theorem C, h would be

of the form Y]_ihpg2 where g2EG', and then by (lb) and (lc), [h, g]

= [IT^?gs> g]= II«[^*> g]p> which would contradict the maximality

of the order of z in G' since the orders of [hi, g] are at most as great

as that of [h, g]=z. Hence G = N(k) where N is normal in G and

G/N has order pl. But p' is at least equal to p' by the choice of 5 and

because of (lc) and the fact that z has order pT.

Again by Lemma 2 there is a k so that, for nEN, [k, n]=e and

[k, A]=z_l or [h, k]=z. Since G = M(g), k=mgr and z=[h, k]

= [h, mgr]=[h, g]r = zr whence r = l and k=mg. Then G = M(g)

= M(k).
Now if P is the group generated by h and k, then we shall show

that P/P' is of order p'+: First P'=PC\G'. For clearly P'EP(~\G';

on the other hand if dEPl^G' then by our assumption there is an/

such that [f, k]=d. But since f = nhr where n is in N, [f, k] = [hr, k]

= [h, k]rEP'- Hence P' = PC\G'.

Next we observe that if P/P' is of order less than pT+', then there

must be a relation of the form hpU = kp" mod G' where t> U^ V<S.

Then if w=(khr*"), W>° = k*"h-*uEG'. But since [h, w]=[h, k]

= z, w is not in 4>(G) for the same reason that hE&(G), and hence the

existence of w contradicts the way s was chosen since v<s. We con-

clude that P/P' is of order pt+'.

Let Q = MC\N. Then, mod G', Q has index pt+° in G; but P has

order />'+• mod G'. Furthermore QfYPCG' and hence G = QP. Also
P' = Pr\G' so that P'=Pr\Q. Finally [g, £]=e for gG<3, £G-P.
Then by Theorem 1, P has an outer automorphism leaving P' ele-

mentwise fixed; this can be extended to be an automorphism of G

by Lemma 1, and the proof of the theorem is completed.

It would be of interest to know whether Theorem 2 is valid if the

class of nilpotency of the group is arbitrary.
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