NOTE ON PERMUTATIONS IN A FINITE FIELD

K. D. FRYER

A recent paper by Carlitz [1] has prompted me to submit the present note. Carlitz proved the

THEOREM (CARLITZ). Every permutation on the numbers of GF(q) can be derived from the permutation polynomials

(1)
$$\alpha x + \beta, \qquad x^{q-2} \qquad (\alpha, \beta \in GF(q), \alpha \neq 0).$$

In this paper we prove the following:

THEOREM. The permutations

$$P: x' = x + 1, \qquad Q: x' = mx^{q-2}$$

in GF(q), q prime, generate the symmetric group \mathfrak{S}_q if:

(2) m is a square of GF(q), q=4n+1,

or

- (3) m is a nonsquare of GF(q), q=4n+3, and generate the alternating group \mathfrak{A}_q if:
 - (4) m is a square of GF(q), q=4n+3,

or

(5) m is a nonsquare of GF(q), q=4n+1.

This result, which arose as a consequence of a theorem in [2], includes the result of Carlitz when q is prime, in that if all α are used in (1), then our Q is present.

Proof of the theorem. Q is of order two, since under Q,

$$x' = \begin{cases} m/x, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

Hence Q in standard form is a product of transpositions. If m is a square of GF(q), Q leaves 0 and two other elements fixed. Then Q is an odd permutation if q=4n+1, and even if q=4n+3. Q has the reverse character if m is a nonsquare of GF(q), for then only 0 is left fixed by Q, and Q contains an extra transposition.

Hence $\{P, Q\}$ contains even and odd permutations if (2) or (3) holds, but only even permutations if (4) or (5) holds. But $\{P, Q\}$ contains the permutation

$$R = P^{-1}OP^{m}OP^{-1}$$
: $x' = -1/x$, $x \neq 0, 1$.

Received by the editors February 15, 1954.

Under this permutation,

$$0 \rightarrow -1 \rightarrow 1 \rightarrow 0$$

and in standard form $R = (0 - 1 \ 1)$ [product of transpositions]. R is an even permutation for all q.

Then $R^2 = (0 \ 1 \ -1)$, $P^{-1}R^2P = (0 \ 1 \ 2)$, and this permutation and $P = (0 \ 1 \ 2 \cdot \cdot \cdot \cdot q - 1)$ generate \mathfrak{A}_q . The theorem follows.

In particular, the permutations

$$x' = x + 1, \qquad x' = -x^{q-2}$$

in GF(q), q prime, generate \mathfrak{S}_q for all q, while the permutations

$$x' = x + 1, \qquad x' = x^{q-2}$$

generate \mathfrak{S}_q if q=4n+1, and \mathfrak{A}_q if q=4n+3.

Consider now the following sets of permutations in GF(q):

(A)
$$x' = x + 1$$
, $x' = \alpha x$, $x' = x^{q-2}$, $\alpha \in GF(q)$, $\alpha \neq 0$.

(B)
$$x' = x + 1$$
, $x' = mx$, $x' = x^{q-2}$, $m \in GF(q)$, $m \text{ fixed, } m \neq 0$.

(C)
$$x' = x + 1$$
, $x' = mx^{q-2}$, $m \in GF(q)$, m fixed, $m \neq 0$.

The permutations (A) are in effect the permutations (1) used in Carlitz's result.

The sets (A), (B), (C) are equivalent if m belongs to (2) or (3) in the sense that each set generates \mathfrak{S}_q . Moreover (A) and (B) are equivalent if m is in (5); each generates \mathfrak{S}_q . (B) will give (C) for this m but the converse is not true, since (C) then yields the alternating group. Finally (B) and (C) are equivalent for m in (4), each generating \mathfrak{A}_q , and (B) is equivalent to (A) if α in (A) is restricted to squares of GF(q).

REFERENCES

- 1. L. Carlitz, Permutations in a finite field, Proc. Amer. Math. Soc. vol. 4 (1953) p. 538.
- 2. K. D. Fryer, A class of permutation groups of prime degree, Canadian Journal of Mathematics vol. 7 (1955) pp. 24-34.

ROYAL MILITARY COLLEGE OF CANADA