
UNIQUENESS IN THE LEFT DIVISION OF ORDER   TYPES

SEYMOUR GINSBURG

In [7] Sierpiiiski gave several sufficiency conditions for the unique-

ness of left and of right division of order types. Davis, in [2; 3], gen-

eralized these results for division on the right. The purpose of this

note is to consider division on the left.

The following results are needed to prove Theorem 1.

Lemma 1. Let M be a simply ordered set which has the fixed point

property.1 If a and fi are any two order types such that a\ M| =/3| M\,

then a=p\

The proof of Lemma 1 is to be found in [S].

Lemma 2. Let H={n\n<w}VJ[u, co*, co*+co}, and let p. be any

order type such that p, <p2.2 If 7 and h are any two elements of H such

that py=pS, then 7 = 8.

Proof. In [4] it was shown that ps<pt for any two positive inte-

gers 5 and / for which s<t. Hence the lemma is true if 7 and 5 are

each integers. Since, for 5 finite, ps<p(s + l) ^uo)^p(oo*+oj) and

ps<p(s + l) ^pco*^p(co*+o}), it follows that the lemma is true if one

of the elements 7 or 5 is finite, and the other is not. Suppose that pu

and pu* are demonstrated to be incomparable order types.2 This will

imply that pco<p(co*+(i>) and that po)*<p(u*+o}). Consequently the

lemma will be true in all cases. In order to see that pu and poo* are in-

comparable order types let

A= A0VA1VJ ■ ■ -\JAn\J ■ ■ • (ra<co)

and

B = • ■ ■ \J Bn \J • • • \J Bi \J Bo (ra < co)

be two ordered sums,3 where| Ai\ = | Bj\ =p for each i and/. The order

Received by the editors April 20, 1954.

1 A simply ordered set E is said to have the fixed point property if, for each

similarity transformation / of E into E, an element p/ can be found so that f(p/) =p/.

1 Let A and B be two simply ordered sets. By J j4 j < | B | is meant that there exists

a similarity transformation of A into B, but no similarity transformation of B into A.

By IAI =\B\ is meant that there exists a similarity transformation of A into B, and a

similarity transformation of B into A. \ A | and | B | are incomparable order types if

there is no similarity transformation of A into B and no similarity transformation

of B into A.

' Let E be a nonempty simply ordered set. Let {^4,|e££J be a family of pairwise

disjoint sets. The set B = W ,c=eA, is called an ordered sum if it satisfies the following

two properties for each pair of elements a, and a,' of B. (1) If e<e' then a,<a,'.

(2) If e=e' and a,<a,' in A„ then a,<a.' in B.
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type of A is ixw and that of B is /wo*. Suppose that juw and juw* are

comparable order types, say iKog/xo)*. Thus there exists a similarity

transformation f of A into B. Let p be an element of A o. The element

f(p) is in one of the sets Bi, say Bm. As/ is a similarity transformation

of A into B, for each element x in the set C = \Jn^iA„, f(x)>f(p).

This, combined with f(p) being an element of Bm, implies that f(x)

is in the set D = 0i£mBm, i.e., f(C)QD. Therefore/xw= | C| gp(w + l).

This is a contradiction. Consequently no such similarity transforma-

tion/can exist. Therefore juwgjuw* is false. In an entirely analogous

manner we see that juw* g/iw is also false. Hence /iw and juo>* must be

incomparable order types. Q.E.D.

Let £ be a simply ordered set and p an element of £. Denote by

Fp the set of those elements x in £ which have the property that

there are only a finite number (possibly none) of elements of £ be-

tween x and a. The set Fp shall be called a component of £.

The components of a set £ have the following two properties:

(*) If Fpr\Fq is nonempty, then Fp = Fq.

(**) The order type of each component is either w, where w is a

positive integer, &>, <o*, or «*+«.

The next lemma is stated as Theorem 2 in [7].

Lemma 3. If a and /3 are any two order types for which an = fin,

where n is some positive integer, then a=/3.

We now prove our main result.

Theorem 1. Let M be a simply ordered set with the fixed point prop-

erty. Let a be any order type such that a<a2. If /3 is any order type such

that a\ M\ =j8| M\, then a =/3.

Proof. Let A and B be two simply ordered sets such that \A\ =ct

and \B\ =p\ Let P=AXM and Q = BXM,i and / be a similarity
transformation of P onto Q. For each element min M let Fm be the

component of M which contains m. Denote by ao a definite element

of A.
If the order type of each component of M were to be transfinite,

i.e., a>, <o*, or w*+w, then the set M evidently could not have the

fixed point property. Therefore one of the components of M must be

finite. Let p be the first element of this component and let / (ao, p)

= (bo, q). Suppose that for some element (a, m) of AX Fp, the element

f(a, m) is not in BXFq. For each element (c, z) of A XFP such that

4 Let R and 5 be any two simply ordered sets. By RXS is meant the cartesian

product of the sets R and S, i.e., the set {(r, s) \ rER, sES}, the elements being or-

dered by last differences.
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(do, p) < (c, z) consider the element f(c, z) = (ci, m) . Now

ibo, q) = /(o0, p) < f(c, z) = (d, u).

Suppose that (d, u) is not an element of the set BXFq. Then the set

L= {w\q<w<u, wEM} must be infinite. For if L were to be finite,

then u would be an element of Fq, whence (d, u) would be in BXFq.

Since z is in Fp the set {x\p^x^z, xEM} has only a finite number

of elements, say r. Therefore the order type of the set

J = \v\(ao,p) <v < (c,z),vEP}

is ^ | A | r. Since L is infinite, it contains r + 1 elements. By Lemma 1,

a=fi. Sincea<a2, it follows that fi<fi2. By Lemma 2, it follows that

fir <fi(r + l). Thus fir <fi(r + l) ^ | B \ \ L\. Since/ is a similarity trans-

formation of P onto Q,

fiD = {y\ibo, q)<y<(d,u),yEBX M\.

Hence B XL is a subset of /(/). Therefore f*(B XL)1 is a subset of /.

Thus

\BXL\   =  I f*(B XL)\   g  | J |   g  | A | r - | S | r < | 5 | (r + 1),

which is a contradiction. Consequently/(c, z) must be an element of

BXFq. In a similar manner we see that for each element (c, z) of

A XFP such that (c, z) <(a0, p), the element/(c, z) is in BXFq. We

conclude that/(.4 XFP) is a subset of BXFq.
By considering the function/* we see that f*(BXFq) is a subset of

AXFP. Thus BXFq is a subset of f(AXFp). Therefore f(AXFp)

= BXFq. Thus \AXFP =\BXFq =\A\\Fq\. By Lemma 2,
|F„| =|Fa|. Thus |.41 |F P=\B\ \F p. Since |F„| is finite, on ap-

plying Lemma 3 we obtain \A \ = \B . Q.E.D.
If, in Theorem 1, one replaces "the fixed point property" by "a

finite component," then the conclusion is no longer valid. For exam-

ple, let | M\ =7j, a = l, and fi=n. Each point of M is a component of

M, and a\ M\ =n=fir). An inspection of the demonstration of Theo-

rem 1 reveals that the proof breaks down at the point where Lemma 1

is applied to obtain a=fi. The reason is that Lemma 1 is no longer

valid if "the fixed point property" is replaced by "a finite com-

ponent."

If the hypothesis on a is removed, then the conclusion may no

longer be true. This is so in the case where | M\ =l+co*+co, a=r\,

and ^=77 + 1. The condition on a may be relaxed if further condi-

tions on M are assumed. To be specific we have

* By/* is meant the inverse function of/.
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Theorem 2. Let M be a simply ordered set which has a first element,

a last element, and the fixed point property. If a and 8 are any two order

types for which a\ M\ = B\M\ then a = B.

Proof. Repeat the proof given in [7]. At each place that Sierpifiski

uses Corollary 2, use Lemma 1 instead.

Now each complete simply ordered set6 has both a first and a last

element. It is also known that each complete simply ordered set has

the fixed point property [6]. Thus we obtain the following known re-

sult [1, p. 42]:

Corollary. If A, B, and C are complete simply ordered sets and

\B\\A\ =\C\\A\,then \b\ =\C\.

Remarks. (1) If M is a well ordered set of order type y+1, then

M satisfies the hypotheses of Theorem 2. Consequently Theorem 2

is a generalization of Theorem 2 of [7].

(2) It is natural to inquire as to whether or not the conclusion of

Theorem 2 is still true if M is no longer required to have (a) a last

element, (b) a first element, and (c) either a first or a last element.

In each of the three cases a simple example shows the answer to be

in the negative.

(a) Let \M\ =1+w*+w, a=n, and j3=tj + 1. Then a\M\ = B\M\
= ■<]■

(b) Let \M\ =w*+«+1, a = n, and j8 = l+ij. Thena|Af| = B\M\
=V-

(c) Let \M\ =w*+w + 1+w*+w, a=X + l, and /3 = 1+X. Then

a\M\ =B\M\ =X+X.
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