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Columbia University

ON PROJECTIVE GEOMETRY OVER FULL
MATRIX RINGS

RIMHAK REE

1. Introduction. In this note we show that projective geometry

over a ring R and that over the full matrix ring Rn are essentially

the same, and extend the fundamental theorem of projective geom-

etry [l, p. 44] to the case of <£>„-modules, where d> is a division ring.

(By a projective geometry over R we mean a lattice of all i?-sub-

modules of an it-module.) As a special case of these results we have

the following: If «S3, any lattice isomorphism of the lattice of all

left ideals of 4>„ and that of ^m where <£> and SP are division rings, is

induced by an isomorphism of $„ and ^m. We obtain also an exten-

sion of the basis theorem for vector spaces to 4>n-modules.

Other extensions of the fundamental theorem of projective geom-

etry have been made by Baer, for the case of it-modules, where R is a

"primary ring" in his sense [2, p. 304], and the ring of rational

integers [3].

2. Main theorems. In the following, by a ring we always mean

an associative ring with unit element. Let it be a ring with unit
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element 1. An additive group A is called an .R-module if ax is defined

for all a in R and all x in A such that

<*(* + y) = ax + ay,

(a + b)x = ax + bx,

a(bx) = (ab)x,

lx = x

for any a, bER and any x, yEA. A subgroup B of A is called an

i?-submodule if axEB for all aG^ and all xEB. The set of all ^-sub-

modules of A forms a modular lattice L(R, A) with respect to group-

theoretical union and intersection. We will call the lattice L(R, A)

a projective geometry over the ring R. (Usual projective geometry is

the case when R is a division ring.)

We denote by Rn the full matrix ring of degree n over R. Our first

main theorem is the following:

Theorem 1. Let Rbe a ring and nbe a positive integer. Then for any

Rn-module M there exists an R-module A such that

(1) L(Rn, M) & L(R, A).

Conversely, for any R-module A there exists an Rn-module M such that

(1) holds.

Now let %= {R, S, • • ■ } be a family of rings and ir be a lattice

theoretical condition. We shall say that the fundamental theorem of

projective geometry (f.t.p.g.) holds in % under ir if, for any ring R in %

and it-module A such that L(R, A) satisfies the condition ir, the fol-

lowing holds:

(2) If 5 is a ring in g and if B is an 5-module such that L(R, A)

=L(S, B), then there exists an isomorphism a of A to B and an iso-

morphism a' of R to S such that the lattice isomorphism Ai-^-A*

= Bi, where Ai denotes an arbitrary element in L(R, A), is induced

by <r, i.e.

a\ = W\yEAi},

and such that (ax)' = a''x' for all a in R and all x in A. Our second

main theorem is the following:

Theorem 2. Let %= {R, S, ■ • • } be a family of rings, n a positive

integer, and ir be a lattice-theoretic condition. If f.t.p.g. holds in %

under ir then f.t.p.g. also holds in %n = {Rn, Sn, • ■ • } under ir. The iso-

morphism a' of Rn to Sn needed in f.t.p.g. in %n can always be chosen so
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that a' is of the type (an)'' = (a'J1), where cr" is a suitable isomorphism of

Rto S.

3. Proof of Theorem 1. Let etj be the «X« matrix with 1 in the

tth row and jth column and 0 elsewhere. It is easily seen that en

commutes with any diagonal matrix. Let a be an element in it. We

shall denote by [a] the diagonal matrix of which all the diagonal

elements are equal to a. The set of all [a] forms a subring of it„ iso-

morphic to R.

Let M be a given i?„-module. If we set A =enM, then we can

consider A as an it-module, since every [a] is commutative with en.

If Mi is an it„-submodule of M, then Ai=enMi is an i?-submodule

of A. We shall show that the mapping <p: Mi—>Ai = enMi gives the

desired isomorphism of L(R„, M) and L(R, A). Let Mi, M2 be two

it„-submodules of M such that enMiC.euM2. We shall show that

MiQM2. For let xEMi. Then euxEMi, and eux = en(eux) EeuMi

QenM2QM2. Thus euxEM2, and euX = en(eiiX)EeiiM2QM2. Hence

euxEM2 for i = l, • • • , n, and since en+ ■ ■ ■ +enn is the unit ele-

ment of i?„, xEM2. Thus MicZM2 is proved. If enMi=enM2 then

clearly Mi = M2. Hence we have proved that <f> is univalent and pre-

serves inclusion. Let Ai be any it-submodule of A, and let Mi be

the set of all elements x in M such that euxEAi for all i = l, • ■ • , n.

Then Mi is an i?„-submodule of M, for if xEMi then euxEMi for

i,j = l, • • -,wand [a]xEMiforallainic,sincecu(c,7x) =5*,-ey*G^ii

where bki is the Kronecker delta. Since [a] and eu permute, and Ax

is an it-submodule of A, [a]xEMi, so that Mi is proved to be an

it„-submodule of M. We shall show that Ai=enMi. Since euxEAi

for all elements x of Mi, we have enMiQAi. Let xEAi; then since

AiQA =eiiM,x = enx' for some x'EM, and enX=xEAi, eux = eu(enx)

= 0 for *>1. Therefore xEMi, and x = enxEenMi. Thus Ai = enMi

is proved.

To prove the second part of Theorem 1 let A be a given it-module.

Let M be the totality of n-uples (xi, • • • , x„) of elements of A. If

we define addition in M by adding component-wise, M becomes an

additive group (direct sum of n copies of A). Let (0,7) be an arbitrary

element of it„, and define(ay)(*i, • ■ • , xn)=(yi, • • • , y„) by y<

= 0,1X1+ • • • +a,-«*»fort = l, • • • ,n. Then M becomes an it„-module,

and the i?-module enM is clearly isomorphic to the i?-module A.

That L(Rn, M)^L(R, A) follows as in the proof of the first half of

Theorem 1, so that Theorem 1 is completely proved.

4. Proof of Theorem 2. Suppose that the f.t.p.g. holds in
g={i£, S, • ■ ■ } under ir, that M is an it„-module, and that L(Rn, M)
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satisfies ir. Let Mi—*Mf = Ni be a lattice isomorphism of L(Rn, M)

and L(Sn, N), where N is an S„-module. By Theorem 1 there exists

an .R-module A and 5-module B such that L(R„, M)atL(R, A),

L(Sn, N)^L(S, B). Then L(R, A)^L(S, B) and clearly both of
these lattices satisfy ir. In view of the proof of Theorem 1, we may

assume that A = enM, B = enN. Now by our assumption there is an

isomorphism a of enM to enN and an isomorphism a' of R to S such

that CiiAfi*= {y'|yGeiiMi} for every i?n-submodule Afi of M, and

such that ([a]eiix)'r= [a"'](eiix)* for every a in R and every x in M.

Now define a mapping t: x—»xt from M to N by

xT = en(eiix)" + e2i(ei2xY + • • • + eni(einxY.

Note that (eux)' is meaningful for xEM and i = l, • • • , n, since

enX = en(eux) EenM. We shall show that t is an isomorphism of M

and N. Since cr is an isomorphism of enM to enN, we have easily

(x+y)r = xT+yT. If xT = 0, then Ci,xT = 0 and therefore enea^x)'

= eii(eux)' = 0. Since (euxYEenNwe have (eux)' = eii(eiixY = 0. Hence

djX = 0,since(risanisomorphism.Thene„x = c,iCHX = Ofori = l, ••• • ,n.

Therefore x = 0. Now we have to show that for any zEN there is an

xEM such that z=xT. Since euz = en(euz)EenN there exists an ele-

ment Xi in enM such that euZ = x\. Put x=enXi-\-e2iX2-\- ■ ■ • +c„iX„.

Then «iiX = «nX,=x,-. Hence euz = (chx)', and e<iZ = e,i(enx)». There-

fore 2 = xT. Thus we have proved that r is an isomorphism of M to A.

Now for any aER and x£Af we have

([a]x)T = 22 ea(eu[a]x)' = E e"([«]«n*)*

= E«'ik'](«"*)' = k'] E«n(eu*)»
= [a'']^,

and (e«*)T=«ii(««*)* =««xT. Therefore for any (an) £2?„ and xEM

we have ((a,y)x)r = (ay)xT. Finally we have to show that Mf

= {xr\ xEMi} for an arbitrary 2?n-submodule Afi of M. We note that

yT=y for all yEeuM. Let x be in Mi. Since we have enM?

— {y\yEeiiMi}, and since ei,-x£eiiAf,, we have Ci<xT = (ci,x)T

= (eux)°EenM?. Hence euXTEenMifC1M?. Therefore xTEMf. Con-

versely, let z be in M*. Then we can find x,- in enMi such that Ci<z

=x"=x£. Hence e,-,z=eaa:J = (c.ix,)T and z = E (««*<)T = ( E^t^)T-

Clearly x = E^'i** 's m -^i. and z = xT. Thus we have proved that the

lattice isomorphism of L(Rn, M) to L(Sn, N) is induced by the group-

isomorphism r. Theorem 2 is completely proved.

5. Applications. Theorem 1 shows that for any division ring $ and

any d>„-module M the lattice L($n, M) is complementary.
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To move from a projective geometry over 4> to one over <!>„ more

effectively, we need lattice-theoretic definitions of a few concepts in

vector spaces. Let I, be a lattice with join U and meet fY We shall

write X^Y if XC\Y = X. Assume that L has a smallest element 0,

that is, 0 is an element such that 0=X for all XEL. A finite set

Xi, ■ • ■ , Xr of elements9*0 in L are said to be independent if

XiC\(Xi\J ■ ■ • UA'i_1UX)+1U • • • UI,)=0 for i = l, ■ ■ ■ , r. A

set {Xa} of elements are said to be independent if every finite subset

of {Xa} is independent. An element X^O in L is said to be minimal

if X = F> 0 implies X = Y. An independent set 93 = {Xa} of minimal

elements is called a basis of L if for every minimal element X there

exist finite number of elements Xi, • ■ ■ , Xn in 93 such that X

SiAiVJ • • • VJXn- The well-known basis theorem of vector spaces

[l, p. 14] can easily be seen to be equivalent to the following: If <P is

a division ring then for any "P-module A the lattice L($, A) has a

basis, and any two bases of L($, A) have the same (cardinal) number

of elements. Now Theorem 1 shows that for any 4>„-module M the

lattice L(4>„, M) has a basis, and that any two bases of L($n, M)

have the same number of elements. From this we may readily prove

the following extension of the basis theorem of vector spaces:

Let $ be a division ring, n be a positive integer, and M be a $n-module.

Then there exists a set 93 = {xa} of elements in M such that

(i) $nxa is isomorphic to the n-dimensional vector space over <P for

any xa in 93,

(ii) any element x in M can be expressed as a linear combination

x=aixai+ • • • +arxar with xai, • ■ ■ , x„r in 93 and ai, ■ • ■ , a, in 4>n,

(iii) OiXai+ • • • -r-arx„r = 0 with xai, ■ ■ ■ , x„T in 93 and Oi, • • • , ar

in <£„ implies aiXai= ■ ■ ■ =arxar = 0. Any two sets 93, 93' satisfying

(i)-(iii) have the same number of elements.

Theorem 2 gives us at once an extension of f.t.p.g. to the case of

simple rings 4>n, since for any family $ = {$> ^. " " ' } of division

rings f.t.p.g. holds under the condition ir: "there are at least three

independent elements" [1, p. 44]. A similar extension when R is the

ring of all integers, if we use a result of Baer [3, p. 39]: If the abelian

group G contains at least two independent elements of infinite order, and

if H is an abelian group such that the lattice of all subgroups of G is iso-

morphic to that of H, then the lattice isomorphism is induced by an iso-

morphism of G and H. In this case we have to consider only torsion

free modules.
Now let R be a ring and A =R® ■ ■ ■ ®R be a direct sum of n

copies of the additive group of R. If we define ax = (aai, ■ • • , aan)

for aER and x = (au ■ • • , an)EA, then A becomes an i?-module.
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We assume that R satisfies the following two conditions:

(i) Any lattice automorphism of L(R, A) is induced by some auto-

morphism a of A such that (ax)' = a"'x" for every aER, xEA, where

a' is an automorphism of R.

(ii) Let P, Q be in the full matrix ring Rn. If PQ = 1 then QP = 1.

Q will be denoted by P_1.

Theorem 3. Let a ring R and an integer n be such that the above two

conditions (i), (ii) are satisfied. Then any automorphism a of the full

matrix ring Rn is of the form:

(3) (««)" = U-\a"'i)U

where a' is an automorphism of R;and U is an element of R„for which

U~l exists.

Proof. We consider RB as an R„-module. Then L(R„, R„) is the lat-

tice of all left ideals of R„. Let I be an arbitrary left ideal of Rn. If

we set ta= {(aij)"| (ay)£l}, then a becomes a lattice-automorphism

of L(Rn, Rn). Now in view of the proof of Theorem 1, we know that

L(Rn, Rn)=L(R, A). Therefore there is a lattice-automorphism /3

of L(R, A) corresponding to the automorphism a of L(Rn, R„). By

our assumption /3 is induced by an automorphism a of A such that

(ax)" = a"'x" for aER, xEA, where a' is an automorphism of R. Now

in view of the proof of the second part of Theorem 2 there is an auto-

morphism t of the additive group of Rn such that t induces the same

automorphism of L(R„, R„) as a and such that ((ay)(£>,y))T = (a"ij)(bij)T

for any (ay), (&y)£Rn. We set [l]T= V, then for any (an)ERn we

have (aij)r = (a1j)V. Since r is an automorphism of the additive

group of RH, there exists an element (6y) such that (6y)T = l, so that

if we set W= (b'J) then 1 = WV. Now by our assumption [l ] = VW.

Therefore if we set (0,7)" = W(a"j') V then 17 is an automorphism of R„.

It is easily seen that r\ induces the same lattice automorphism of

L(Rn, Rn) as t, and consequently, as a.

Now we set i = oafl. Then 1 is an automorphism of i?„, which

induces the identity lattice automorphism of L(R„, Rn). We set

n n

P = E e«i«if,       Q = E e.i«i<-
t=i 1=1

Then PQ =Ee<ienei<- Since the left ideal Rneu is invariant under the

automorphism t, we have e\i = Sien for some SiERn- Then e\xen

= Sieneii = Sien = e\i. Therefore PQ= E««i4= Ee« = ( E««)'= fl]-
Hence QP = [l ]. Now we consider the automorphism y of R„, defined
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by

X7 = QX'P = 22 ene'uX1 e)ieij.

Then ey=e,i«iiCiy=«aCiy=ey for any i, j = l, 2, • ■ • , n. Now for

any [a], [a]7 commutes with all ej = c,7. Hence [a]T= [b] for some

bER- It is easily seen that r induces an automorphism of the ring

of all matrices of the form [a]. Therefore, there exists an auto-

morphism y' of R such that [a]T = [a"1'] for all aER- Then for any

(atj)ERn we have (a^)* = (alf), and (aij)i=P(a11')Q. Therefore, from

a = w,vfehave(aij)" = (aij)"=P'(al')iQ'> = P'<W(al'''')VQ;=U-1(a?j')U
where we set U = VQ*, a' =y'a'. Thus Theorem 3 is proved.

From Baer's Theorem [3, p. 39] we know that the ring / of all

integers satisfies the above condition (i) for all n. Since / can be

imbedded in a field, (ii) is also satisfied for all n. From Theorem 3,

therefore, it follows that any automorphism of the full matrix ring /„

is inner.

The author wishes to express his gratitude to Professor S. A. Jen-

nings for help and encouragement in the preparation of this work.
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