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1. In this note we shall prove three inequalities suggested by the

well-known analogy between matrices and complex numbers. These

are the matricial analogues of the following simple numerical in-

equalities:

(a) If z = | z| • ei9, 0 real, and if a is any real number, then

| z - eie | g | z - eia | g | z + eiS \.

(b) If z is complex, x real, then

|z-Rez|g|z-*|.

(c) If x and y are real, then

1 x — i     v — i        ,

2 x + i      y + i

In developing the matricial statements corresponding to (a), (b),

(c), we must replace the modulus of a complex number by a suitably

chosen norm for matrices. Let Mn denote the linear space of all

square matrices of order w with complex coefficients. A norm on Mn

is a real-valued function |||| defined on Mn such that: (i) ||.4||^0;

(ii) ||4||=0 if and only if 4=0; (iii) ||c4|| = |c| ||,4|| for any complex

number c; (iv) ||^4 +B\\ g||-4|| +||i*||. A norm | ■ || is unitarily invariant

if it satisfies the additional condition: (v) | -4|| =||t74|| =||.4i7|| for

every unitary matrix U of order n. It is rather noteworthy that the

matricial analogues of (a), (b), (c) hold for any norm that is unitarily in-

variant.

For any matrix AEMn, the non-negative square roots of the

eigenvalues of A*A will be called singular values of A. The following

result of J. von Neumann [3] characterizes all unitarily invariant

norms on Mn. For any symmetric gauge function2 4> of w real vari-

ables, the function || • || defined on Mn by
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* Following von Neumann, a gauge function * (in the sense of Minkowski) is

called symmetric if *(<i, h, • • • , tn) —*(«//,, est,-,, • • • , e„«,„) for any combination of

signs t>= ±1 and for any permutation (ji,jt, • ■ • ,jn) of (1, 2, • • • , n). For general

properties of symmetric gauge functions, see [4, pp. 84-92].
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(1) ||i4 ||  = $(«!,«„ •■■,«.) (AEMn),

where at, a2, • • • , a„ are the singular values of A, is a unitarily in-

variant norm. Conversely, every unitarily invariant norm on Mn can

be obtained in this way; let $(ai, a2, • • • , an) = \\A\\, where A is a

diagonal matrix with diagonal entries ai, a2, • • • , a„.

Let A, BEMn. Let «i^a2^ ■ ■ ■ ̂ a» and fii^fi2^ • • • £/3„ be
the singular values of A and B respectively. Then it is known [l,

Theorem 4] that ||j4|| £s\\B\\ for every unitarily invariant norm || ||

if and only if

(2) £ af ^ £ ^ (1 £ k £ ra).
i-l i=l

According to these known results, the proof of the matricial ana-

logues of (a), (b), (c) amounts to showing certain inequalities involv-

ing singular values.

In our proof of the matricial analogue of (a), we shall need the fol-

lowing theorem:3 If X, Y, Z are Hermitian matrices of order ra, with

eigenvalues

xi ^ x2 ^ • • • 2i xn,   yi ^ y2 ^ • • • ^ yn,   zi ^ z2 =£ • • • ^ z„

respectively, and if X— Y=Z, then

(3) Max     22 («ft - Vii) = £ «•■ (1 = * ^ »)•
)'l<)2<- • -<Jl •-! »_1

2. Theorem 1. Lcf AEMn and A = UH, where U is unitary and H

is Hermitian positive semi-definite. Then for any unitary matrix

WEMn,

(4) \\A - U\\ ^ \\A - W\\ ^ \\A + U\\

holds for every unitarily invariant norm.

Since the norm is unitarily invariant, we have

\\A + U\\ = \\U(H + I)\\ = ||HT/||,

\\A - W\\ = \\U(H - U*W)\\ = \\H - U*W\\.

It follows that Theorem 1 is equivalent to the following apparently

less general theorem:

Theorem 1'. Let H, VEMn. If H is Hermitian positive semi-defi-

sSee [5, Theorem 2]. An equivalent geometric formulation of this result is

stated in [2, Theorem 1 ].
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nite, and V is unitary, then

(5) \\B - I\\ g \\H - V\\,

(6) ||Z7-F||g||ff + /||

hold for every unitarily invariant norm.

Proof of (5). We first digress to define, for any matrix M of order

w, the Hermitian matrix

« = ("")
\M* 0/

of order 2w. Then it is easy to see that the eigenvalues of M are pre-

cisely the singular values of M and their negatives.4

Let A =H—I, B=H— V. Let ai=a2= • • • =a„ be the singular

values of A; |8i^|82= • • • ^j3„ be the singular values of B; 171^*72

W • • • ^)|, be the eigenvalues (also singular values) of H. Then

£ oa =      Max       22 I Vu~ 11 (1 = * = «)•
>—1 ll<)8<--.<Ji    i=l

To prove (2), which will imply (5), we must show

k k

(7) Max       VI Vil - 11 g 22 Pi (1 g ft g n).

This inequality (7) will be obtained, if we apply the theorem men-

tioned above to 8—V = B. In fact, according to the remark made at

the beginning of this proof, the eigenvalues of H, V, and B are

Vl, V2,  •   ■   ■   , Vn,   —  Vn,   —  >7»-l.  •  •   ■   .   —  Vl,

1,1,•• •, 1, - 1, - 1,■ • •, - 1,

01, Pi, • • • , /S„, — /3„, — /3„_i, • • • , — /Si

respectively. Thus (5) is proved.

Proof of (6). Let ai=a2= • • • =a„ and /3i^/32= • • • ^/3„ be

the singular values of H— V and H+I respectively. Let J7i^ij2

^ • • ■ ̂ Vn be the eigenvalues (also singular values) of H. We are

to prove (2).

It is known [l, Theorem 2] that if X, Y, Z are any three matrices

of order w, with singular values

xi ^ x2 = • ■ • ^ xn,   yi ^ y2 ^ ■ ■ ■ t yn,   zi ^ z2 ^ • • • ^ z„

4 The authors are grateful to H. Wielandt for calling this useful fact to their

attention.
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respectively, and if X+Y = Z, then

Zt+j+i Ss Xn.i + yj+i,

and in particular:

Zi ^ *,- + yi (1 ^ i g ra).

If we apply this fact to H- V=H+(- V), then

«. ^ vt + 1 (1 ^ * ^ »)•

As »?i+l =fii, we have not only (2), but actually

(8) at gfii (l^t^ «).

Theorem 2. Let A, HEMn. If H is Hermitian, then

(9) J A -!li!||<;||4-fl||

A0W5 /or e»ery unitarily invariant norm.

Proof. Observe first that the singular values of a matrix X are

the same as those of X*. Combining this fact with von Neumann's

characterization of all unitarily invariant norms on Mn, it follows

that \\X\\ =||X*|| for every unitarily invariant norm.

We write

A+A*      A - H       H - A*
A-=-+-,

2 2 2

which implies ||i4 -(A+A*)/2\\ g\\A -H||/2 + ||ii"-4*||/2. This is
precisely (9), since ||H-^*|| = |U-iij|.

Remark 1. Corresponding to the inequality | Re z\ g | z\ for com-

plex numbers z, we have the trivial inequality ||(.4+.4*)/2|| ^||^4||

for matrices. In this connection, we mention the following less trivial

proposition: Let AEMn. If Xi^X22: • • • ^X„ are the eigenvalues of

(A +A*)/2, and ifai^a2^ • ■ ■ ^a„ are the singular values of A, then

(10) \i ^ at (1 ^ i ^ ra).

Observe that ||U+^*)/2|| ^\\A\\ insures only that £f_iX<g £?.!«.•
(1 g&^ra). To prove (10), let A = UH, where U is unitary and H is

Hermitian positive semi-definite. Let X\, x2, • • • , xn be ra orthonor-

mal eigenvectors of A*A such that A*Axi=a\xi (l^i^n). Let pt

denote the maximum of the inner product ((.4+.4*)y/2, y), when

the vector y varies under the conditions

(11) IMI = l;      (*/, y) = 0     for 1 £ j £ i - 1.
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Then by the minimum-maximum principle:

(12) \i g pa (1 g i g w).

On the other hand, since A = UH, we have

/A+ A*       \
(-y, y) = Re 04y, y) = Re (Hy, U*y)

g||ffy||-||/7*y|| = ||Fy||.||y||.

If||y||=l,then

(c~^~% y) - "Fyii= {A*Ayt y)m-

Hence ju< is not greater than the maximum of (A*Ay, y)1'2, when

y varies under conditions (11). But this maximum is precisely a,-,

so we have p-.-gaii, which together with (12) proves (10).

Remark 2. Ifpi^p2^ ■ • • ^p„ and ai^a2^ • • • ^a„ denote the

singular values of (A+A*)/2 and A respectively, then inequalities

Ptgai (1 gigw) are generally false. This can be seen by taking

-CD-
Theorem 3. Let H, KEMn be both Hermitian, and let U, V be

their Cayley transforms:

U = (H - H)(H + il)~\       V = (K - U)(K + il)-1.

Ifai^a^ ■ ■ • ^a„ awd/3i^02^ • • • ^/3„ are the singular values of

(U—V)/2 and H—K respectively, then

(13) at g pi (1 g * g «).

Consequently, we have

(14) \\U - V\\ ^ 2\\H - K\\

for every unitarily invariant norm.

Proof. We write

U = I - 2i(H + il)-1,       V = I - 2i(K + il)~l

so that

(U - V)/2i = (K+ il)-1 - (H + il)-1

= (K + il)-1^ + il) -(K+ U)](H + il)-1,
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or

(15) (U - V)/2i = (K + iI)-\H - K)(H + iI)-\

It is known [l, Theorem 2] that if X, Y, Z are any three matrices

of order ra, with singular values

xi ^ x2 ^ • ■ • ^ xn,   yi ^ y2 ^ • • • ^ yn,   zi ^ z2 ^ • • • ^ z„

respectively, and if XY = Z, then

z<+,+i S= xi+i-yi+i.

The singular values of (U— V)/2i are obviously also those of

(U— V)/2. Let Vi = V2= - ■ - = Vn and «i^k2^ • • • ^k„ be the singu-

lar values of (H+iI)~x and (if+iFj-1 respectively. Applying the

inequality just mentioned to (15), we get

ai+j+k+i ^ Ki+ifij+i7)k+i.

In particular:

(16) ai ^ Kipm (1|«^ ra).

On the other hand, from

(H + U)-»(H + ii)'1 = (H2 + I)-1,

we infer that ?h = L Similarly, Kigl. Hence (16) implies (13).
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