AN EXTREMUM PROPERTY OF SUMS OF EIGENVALUES!

HELMUT WIELANDT

We present in this note a maximum-minimum characterization of
sums like o3+a7+oas where oy - - - Za, are the eigenvalues of a
hermitian #n X7 matrix. The result contains the classic characteriza-
tion of a, as well as the maximum property of au+as+ + - - +am
given recently by Fan [4]. Though the result is valid also for a com-
pletely continuous hermitian operator in Hilbert space, we shall for
the sake of simplicity assume the dimension to be finite. As an ap-
plication we obtain linear inequalities relating the eigenvalues of the
sum of two hermitian matrices to the eigenvalues of the summands.

THEOREM 1. Let R, be a unitary n-space with inner product (x, ).
Let A be a hermitian operator on R, with eigenvalues ocn == -+ - + Zotp.
Let S be a set of distinct natural numbers Sn and 1<j< - - - <I<m
its elements. Then

aitai+ - +atan

= max min Z (A %,, x,).
RC...CR,; dim Ry=c o€ R, (2a,28)=d,g ¢E S

¢

More explicitly, formula (1) is equivalent to the following state-
ments I, II.
I. Let R;CR;C - -+ CRiCR,. be given subspaces of R, such
that the dimensionality of R, is o, for each ¢ €S. Then there are vec-
tors x;, xj, * * -, Xm, such that

1 a = f),
(2) %% ER, (¢ € S), (%ay xB) = {0 Ea »; g;
(3) D (A%, %) S 2 o
E8 €8

II. There is a special sequence E;CE;C - -+ CEi{CEn of sub-
spaces? of R, such that for every orthonormal set of vectors

Xiy X, ¢ ¢, Xm, With x,EE, (¢ ES), we have
Z (A%, %) = D o
€S €8
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1 This paper was prepared under a National Bureau of Standards contract with
The American University, Washington, D. C.

* Subscripts of symbols for spaces denote the dimensionality throughout this

paper.
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The proof of II is easy. Let ¢;, - - -, e, be an orthonormal set of
eigenvectors of A corresponding to au, - -, a,. Define E, to be the
subspace spanned by e, - -, 6. Then (dx, x,)Za, (x.EE,,
(x5, x;) =1), hence

> (A%, %) Z 2 a.
€8 €8S
We are going to prove I by induction with respect to .

(a) Let S contain all natural numbers ¢ <#n. Then we choose
%y, + + +, Xa satisfying (2) but otherwise arbitrary. The left-hand side
of (3) is the trace of the matrix representing A with respect to the
basis x,. Hence (3) holds. This especially applies to #»=1.

(b) In what follows we may assume that there is a natural number
=<n which is not in S. The largest of these “gap numbers” will be
denoted by g. We define f to be the largest number in S which is <g
if there exists such a number; if not, we define f=0. In either case
we have 0=f<g=<n. If f>0 then R; is defined by hypothesis; if
f=0 we define R;=0, in accordance with our subscript convention.

We begin with the simplest case. Let &S, that is g=#. Then we
choose any subspace R,_; containing R;. We define A4 to be the
unique hermitian operator on R,_; such that

4 Az, x) = (Ax, x) (x € R._y).
The eigenvalues &= - - - 2 &, of 4 are known [3] to satisfy
(5) @ = o w=1---,n—1).

By the induction hypothesis, there are orthonormal vectors x, € R_;
such that x,ER, (¢ ES) and

> Az, %) £ D G

IS €8

This inequality, by virtue of (4) and (5), implies (3). This finishes
the case g=n.

Now let &S, that is, g<n. We choose orthonormal eigenvectors
€41, * * *, s Of A corresponding to agyy, - - -, a.. Together with R,
they span a space of dimension = (#n—g)+f<n. Hence we can chioose
some subspace R, ; such that

(6) R, C Rn—l) e & Rn—l (1’ =8 +1,---, ”)°
Since g+1, - - -, nES, we have
R/ g Rg+l m Rn—l g st g Rn—l n Rn—l g Rn—b

Since the dimension of R,N\R,_; is at least v—1 we can choose sub-
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spaces Ry, + + -, Ro—2 such that
(7) Rn C Ra+ly Sty Rn—2 C Rn—l,
(8) R,C ---CR,CR,C---CRusCR,.

We define as before the operator 4. Then (4) and (5) hold. By the
induction hypothesis applied to 4 and the subspaces (8), there are
orthonormal vectors x, (¢ €S) such that

(9) %ER (¢<g), %ER_1(sc>p),
n—1
(10) 2 (At %) S D Gt X G
ES & Sie<yg o=g
Using (4), (5), (7), we find that
9 % € R, (e €9,
n—1
(10,) Z (A Xqy xc) § Z ap+ E &,.
ES o€ Sie<yg o=g
To complete the proof of Theorem 1 it is sufficient to show
n—1 n
(11) Z &, é Z Ag.
o=g o=g+1
From (5) we get only > "=} &, < > "2} a,.
_However, we know from (6) that €41, - - -, €a are eigenvectors of
A, hence ay44, + - -, o, are eigenvalues of 4. Thus, we find for the

smallest eigenvalues of 4 the inequalities
Otn—1 = O, Gn—g = Qn-1y * * ° &a é Qgi1

which prove (11) and Theorem 1.
Applying Theorem 1 to —A instead of 4 and denoting the sub-

space orthogonal to R, by T,_,, we find the equivalent
THEOREM 1’. Under the assumptions of Theorem 1 we have

ait+aj+ - t+atan

= min max > (Ax,, ).
Ti_1C -+ -CTy_yi dim Tyymo—1  XolTy_ 1i (3,.358)=8ag €S

(12)

REMARKS. (2) Theorem 1’ for s=m is a classical result (Weyl [9],
Courant [2]), but Theorem 1 for s=m has also been explicitly men-
tioned by several authors. Theorem 1 for ¢=1, j=2, .-, l=m—1
has been published by Fan [4] in a simpler form. These references
also apply to Theorem 2.
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(b) It seems worth searching for an extremum characterization of
Ec,a, where ¢;, - -+, ¢, are arbitrarily given real numbers.

THEOREM 2. Let A, B, C be hermitian operators on R, such that
A+B=C. Let the eigenvalues of A, B, C be a,, B,, -, respectively
(numbered in decreasing order). Let S be a set of k natural numbers
1<j< + + + <I<m such that m<n. Then

Yvitvit -+t r.

Saitait+---tatantpitpBet -+ B+ B
Proor. By II there are subspaces R;CR;C : : - CR, such that
(149) ~vi+7vi+ - -+ vt va= min > (Cx,, %,).

2, ER,; (24, 7g)=3,g €S

(13)

Keeping the subspaces R, fixed we choose vectors y, such that

(15) Yo (S Rvy (yar yﬂ) = 60131
(16) E (4y., ¥0) = min E (A%, ).
€8 2,ER,; (24, 2g)mBag 0E S

To prove Theorem 2 we estimate
E (Cyay 30) = Z (435, 30) + E (BYsr 94)
ST €38 €8

in two different ways. The left-hand side is 2v;+v;+ - * +Yi+Ym
by (14) and (15). On the right-hand side we have by Theorem 1

EOUmM§ann+“'+m+am
A3

and by Fan’s theorem (i.e., Theorem 1 in case 1=1, j=2, - - .)

gw%M§m+m+~wwH+m
{3

This completes the proof.

Theorem 2 can be shown to be equivalent to the following state-
ment due to Lidskit [7]3

Let o, B8, v be the points with coordinates o, By, v» =1, - - -, 1)
respectively. Define T to be the convex closure of the n! points a+PB
where P runs over all n! permutation matrices. Then under the assump-
tions of Theorem 2 we have

a7 vyET.

3 It ought to be mentioned that the author did not succeed in completing the
interesting sketch of the proof given by Lidskil. This failure gave rise to the present
investigation.
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We prove that (13) and (17) imply each other. By a theorem of
Hardy, Littlewood, and Pélya [5], the validity of the inequalities

(13) (for every choice of 4, 7, - - -, I, m) is a necessary and sufficient
condition in order that there exist an # X» matrix M = (m,,) such that
(18) my = 0, Z Myy = Z My = 1,

M »
(19) v — a = MB.

On the other hand, the set of all matrices M satisfying (18) is
known to be the convex closure of the n! permutation matrices
P (Birkhoff [1]; see also [6]). Hence the range of the points M},
where (3 is fixed and M runs through all matrices satisfying (18), is
the convex closure of the #! points PB. So (19) is true if, and only if,
v —a is in the convex closure of the points Pg, that is, if and only if

y&rl.
REMARK. From (19) we see that under the assumptions of Theorem 2
(20) F('Yl_ah"':'Yn_an)éF(Bb"',ﬂn)

holds for every S-comvex function F of n variables (for definition and
criteria of S-convexity, see Ostrowski [8]). For instance, if f(x) is a
convex function then

(21) 3 S — @) S ilms,).
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