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We present in this note a maximum-minimum characterization of

sums like at+^+aa where a^ • • • ^a„ are the eigenvalues of a

hermitian nXn matrix. The result contains the classic characteriza-

tion of am as well as the maximum property of cti+a2+ ■ ■ • +am

given recently by Fan [4]. Though the result is valid also for a com-

pletely continuous hermitian operator in Hilbert space, we shall for

the sake of simplicity assume the dimension to be finite. As an ap-

plication we obtain linear inequalities relating the eigenvalues of the

sum of two hermitian matrices to the eigenvalues of the summands.

Theorem 1. Let Rn be a unitary n-space with inner product (x, y).

Let A be a hermitian operator on Rn with eigenvalues «i ^ a2 ^ • • • ^ ctn.

Let S be a set of distinct natural numbers ^n and i<j< ■ • • <Km

its elements. Then

at + aj + ■ ■ ■ + at + am

= max min 22 (Ax„ xc).

More explicitly, formula (1) is equivalent to the following state-

ments I, II.

I. Let RiERjE • • • ERiERm be given subspaces of Rn such

that the dimensionality of Rc is cr, for each crES. Then there are vec-

tors Xi, Xj, • • • , xm, such that

.1 (« = fi),
(2) x, ER,(oE S),        (xa, xff) =  <

U) (a t* fi),

(3) 22 iAx„ Xa) ̂  22 <*«■

II. There is a special sequence E.C-EyC • • • EEiEEm of sub-

spaces' of Rn such that for every orthonormal set of vectors

xit Xj, • • • , xm, with x„EE„ (aES), we have

22 (Ax„ xa) ̂  22 ««■•
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The proof of II is easy. Let ei, ■ ■ ■ , en be an orthonormal set of

eigenvectors of A corresponding to ai, ■ ■ • , a„. Define E„ to be the

subspace spanned by e\, • ■ ■ , e„. Then (Axr, x„)^aa (x,EEt,

(xa, xt) = 1), hence

22 (Ax't x«) = 22<*'-

We are going to prove I by induction with respect to n.

(a) Let S contain all natural numbers a^n. Then we choose

Xi, • • • , xn satisfying (2) but otherwise arbitrary. The left-hand side

of (3) is the trace of the matrix representing A with respect to the

basis x,. Hence (3) holds. This especially applies to w = l.

(b) In what follows we may assume that there is a natural number

^n which is not in S. The largest of these "gap numbers" will be

denoted by g. We define/ to be the largest number in 5 which is <g

if there exists such a number; if not, we define f = 0. In either case

we have 0g/<g^». If />0 then Rf is defined by hypothesis; if

/ = 0 we define R/ = 0, in accordance with our subscript convention.

We begin with the simplest case. Let nES, that is g=n. Then we

choose any subspace Rn-i containing Rf. We define A to be the

unique hermitian operator on Rn-i such that

(4) (Ax, x) = (Ax, x) (x E Rn-i).

The eigenvalues 65i ̂ • • • ^ an-i of A are known [3 ] to satisfy

(5) i^«, (v = 1, • • • , n - 1).

By the induction hypothesis, there are orthonormal vectors x,ERn-i

such that x„ER, (o~ES) and

22 (A.x„ xa) g 22 a--

This inequality, by virtue of (4) and (5), implies (3). This finishes

the case g = n.

Now let nES, that is, g<n. We choose orthonormal eigenvectors

ea+i, ■ ■ • , en of A corresponding to a„+i, ■ ■ ■ , an. Together with R/

they span a space of dimension ^ (n — g) -\-f<n. Hence we can choose

some subspace Rn-i such that

(6) Rf C Rn-i, e, E Rn-i       (v = g + 1, • • • , »).

Since g+1, • • • , nES, we have

Rf C R0+i n i?n-l Q-  ■  ■   Q Rn-l n Rn-l C Rn-U

Since the dimension of R,r^Rn-i is at least v — 1 we can choose sub-
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spaces R„, • • • , Rn-t such that

(7) Rg C Ra+i, ■ • ■ , Rn-t E Rn-l,

(8) Ri C • • • C Rf C R„ E ■ ■ ■ C Rn-i C &_i.

We define as before the operator A. Then (4) and (5) hold. By the

induction hypothesis applied to A and the subspaces (8), there are

orthonormal vectors x, (oES) such that

(9) *, E R, (a- < g),        x, E R.-i (<r > g),

n-l

(10) 22 (Ax„ x.) ̂     22    &«+22 ̂

Using (4), (5), (7), we find that

(9') x,EK (<r E S),

n-l

(10') 22 iAx„ x.) g     £    ct^+22 *»•
»Gs »Ss;»<b 3= a

To complete the proof of Theorem 1 it is sufficient to show

n—1 n

(ii) 22 &. =g E «..

From (5) we get only 22"~I «»= 22"-J «#•
However, we know from (6) that ea+i, ■ ■ ■ , e„ are eigenvectors of

A, hence a„+i, ••-,«„ are eigenvalues of A. Thus, we find for the

smallest eigenvalues of A the inequalities

<*n-l  ^  Ctn, «n-2  ^   «n-l,   '   '  '   , aS  ^   ««+l

which prove (11) and Theorem 1.
Applying Theorem 1 to —A instead of A and denoting the sub-

space orthogonal to R, by T"„_„ we find the equivalent

Theorem 1'. Under the assumptions of Theorem 1 we have

at + otj + ■ ■ ■ + ai + am

(12> • X- I a        ^= mm max 2^ (Ax„ x,).
Ti-iC- ■ -Crm_i; dim T^-,-1      *r.«V_ii  (*a.*0)=°aj) «6«

Remarks, (a) Theorem 1' for i=w is a classical result (Weyl [9],

Courant [2]), but Theorem 1 for i = m has also been explicitly men-

tioned by several authors. Theorem 1 for i = l, j = 2, • • • , l = m — l

has been published by Fan [4] in a simpler form. These references

also apply to Theorem 2.
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(b) It seems worth searching for an extremum characterization of

22c'a' where C\, • • • , c» are arbitrarily given real numbers.

Theorem 2. Let A, B, C be hermitian operators on Rn such that

A+B = C. Let the eigenvalues of A, B, C be a„ ft, y„ respectively

(numbered in decreasing order). Let S be a set of k natural numbers

i<j< • • • <Km such that m^n. Then

T. + 7;+ • • * +71+ 7m

£ at + ctj + • • • + at + a* + ft + ft + • • • + ft-i + ft.

Proof. By II there are subspaces RiERjE • ■ • ERm such that

(14) y{ + yj+ ■ ■ ■ + yi + ym = min 22 (Cx„, x„).

Keeping the subspaces R, fixed we choose vectors y, such that

(15) y. E R„      (ya, ye) = 5„p,

(16) 22 (Ay°> y«) —       mm        22 (Ax,, x,).

To prove Theorem 2 we estimate

22 (Cy*< y*) = 22 (Ay., y.) + 22 (By«> y>)
»Gs »£s <r£S

in two different ways. The left-hand side is s£'Yi+7y+ • • • +7j+7»

by (14) and (15). On the right-hand side we have by Theorem 1

22 (Ay„ y.) ^ ati + aj + ■ ■ ■ + ai + am,

and by Fan's theorem (i.e., Theorem 1 in case i = l, j = 2, • • ■ )

E (5>- y°) = ft + ft + • • • + ft-i + ft-

This completes the proof.

Theorem 2 can be shown to be equivalent to the following state-

ment due to Lidskil [7].*

Let a, 8, y be the points with coordinates a„ ft, y, (v = l, ■ • ■ , n)

respectively. Define V to be the convex closure of the n\ points a+P8

where P runs over all n! permutation matrices. Then under the assump-

tions of Theorem 2 we have

(17) t E r.

* It ought to be mentioned that the author did not succeed in completing the

interesting sketch of the proof given by Lidskil. This failure gave rise to the present

investigation.
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We prove that (13) and (17) imply each other. By a theorem of

Hardy, Littlewood, and Polya [5], the validity of the inequalities

(13) (for every choice of i, j, ■ • ■ , I, m) is a necessary and sufficient

condition in order that there exist an nXn matrix M = (m^,) such that

(18) m», ̂  0,        22 mi» = 22 m*' = U

(19) 7 - a = Mfi.

On the other hand, the set of all matrices M satisfying (18) is

known to be the convex closure of the «! permutation matrices

P (Birkhoff [l]; see also [6]). Hence the range of the points Mfi,

where fi is fixed and M runs through all matrices satisfying (18), is

the convex closure of the nl points Pfi. So (19) is true if, and only if,

y — ct is in the convex closure of the points Pfi, that is, if and only if

yET.
Remark. From (19) we see that under the assumptions of Theorem 2

(20) F(yi - ai, ■ ■ ■ , 7n - «n) g F(fiu ■ ■ ■ , fin)

holds for every S-convex function F of n variables (for definition and

criteria of 5-convexity, see Ostrowski [8]). For instance, if f(x) is a

convex function then

(21) Z/(Y, - «')   ̂   22f(fir).
i—l r—1
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