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THE SCHWARZIAN DERIVATIVE AND CONVEX
FUNCTIONS

RICHARD F. GABRIEL

1. Introduction. In a comparatively recent paper [2], Nehari has

shown that if

(1.1) f(z) = 1/z + aiz + a2z2 + • • • for 0 < | z | < 1

and

(1.2) | {/(*); z}|gy for |z| <1,

where {/(z), z} is the Schwarzian derivative of f(z) with respect to z,

then/(z) is univalent in the unit circle. The methods of Nehari can be

modified to apply to functions of the form (1.1) to be shown univalent

and convex in the unit circle. The principal result obtained in this

paper is the following:

Theorem 1. Iff(z) is of the form (1.1), regular for 0<|z| <1, and if

(1.3) | {/(z), z} | g 2c0 /or|z|<l,

where c0 is the smallest positive root of the equation

(1.4) 2xl>2 - tan x1'2 = 0,

then f(z) is univalent in 0 < | z\ < 1 and maps the interior of each circle

\z\ =r<l onto the exterior of a convex region. The constant Co is the

largest possible one.
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2. Introductory topics. Let the function p(z) be analytic and single-

valued for \z\ <1. The differential equation

(2.1) w" + p(z)w = 0

will have two linearly independent solutions Wi(z) and w2(z) which are

uniquely determined by the conditions

«n(0) = l,      wi'(0) = o,

w2(0) = 0,        w{ (0) = 1.

These solutions are analytic and single-valued for \z\ <1 and conse-

quently have the following power series expansions valid for |z| <1

00 00

(2.3) wi(z) = 1 + E <*nzn, wi(«) = z + E bnzn.
n—2 n—2

For these solutions the Wronskian, W(wu w2), is

wAz)     w2(z) ,    ,
(2.4) W(wi, w2)=       ;/ 7     =1 for \z   < 1.

Wl (z)    w2 (z)

It is known that for a function/(z) of the form (1.1) to map the

interior of each circle \z\ =r<l onto the exterior of a convex region,

a necessary and sufficient condition is that

/        zf"(z)\ .     ,
(2.5) 9f(1 + ^L£)=0 for | 0 | < 1.

\        f (z) /

Let wi(z) and w2(z) be the two linearly independent solutions of (2.1)

subject to the conditions (2.2). Consider

wi(z)       1
(2.6) /(*)=-TT --+••••

wj(z)       z

Then

/-i <7\      *// \       W2Wl  ~ W2 Wl W(wu w2) 1
(2.7) f(z) =-—- =-—— =-——,

w\(z) w\(z) w\(z)

2wl (z)
(2-8) y»W=_iLi.

w\(z)

With these substitutions in (2.5) we have

,     x /       */"(»)\ /zwi(z)\
2.9 ge(i + Z_ii) = i _ 29?(—Hi).
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But condition (2.5) implies

(zw2 (z)\ ,    ,
-—1^1/2                         for    *   < 1

w2(z) /

and conversely.

The inequality (2.10) indicates that w2(z) is starlike with respect

to the origin in \z\ < 1. Sincew'2(0)5^0 it follows that w2(z) is univalent

for | z| < 1. Thus, because w2(0) = 0, it follows that w2(z) 5*0 for 0 < | z|

< 1 and f(z) defined in (2.6) is analytic and single-valued in 0 < | z | < 1

and has a simple pole at the origin.

The preceding remarks may be summarized as

Theorem 2. The function f(z) defined in (2.6) will be univalent and

convex for 0<|z| <1 if and only if w2(z) satisfies (2.10).

It is surprising to observe from (2.10) that the convexity of f(z)

depends only on w2(z). It has already been noted that w2(z) is starlike,

but (2.10) indicates that w2(z) must be a member of a special class of

starlike functions. An investigation of the geometric significance of

this class of functions should prove of interest.

In the proof of Theorem 1, we shall make use of some relationships

between the Schwarzian derivative {/(z), z} and the solutions of the

linear second order differential equation (2.1). Although these rela-

tions are, perhaps, generally known, they will be listed for convenient

reference.

If yi(z) and y2(z) are any two linearly independent solutions of

(2.1), the ratio

yi(z)/yi(z)

satisfies the differential equation

(2.11) {f(z),z} =2p(z)

where

(2-i2)       {/(z),z}=(g-iQ:

Conversely any solution of (2.11) may be written as the ratio of

two linearly independent solutions of (2.1). For if Wi(z) and w2(z)

are the two linearly independent solutions of (2.1) satisfying (2.2),

then

yi(z)  = CnWi(z) + Ci2W2(z),

y2(z) = c2iwi(z) + c22w2(z),
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with

Cn     Ci2

(2.14) 9*0
C21     C22

and the ratio

yi(z) _ CuWi(z) + ci2w2(z)

y2(z)      c2iWi(z) + c22w2(z)

involves three arbitrary constants. But the differential equation

(2.11) is of third order. Hence (2.15) is a general solution and any

solution of (2.11) may be obtained from (2.15) by a proper choice of

constants. If/(z) is to have the form (1.1), Ci2 = C2i = 0 and Cn = c22=l.

From this it follows that

(2.16) f(z) = wi(z)/w2(z).

Thus there will be no loss of generality if we confine our attention to

the two particular solutions.

3. The function c1'2 cot (c1,2z). Let ca be the smallest positive root

of the equation (1.4). Co satisfies the inequalities

(3.1) x/3 < 1.16 < c01/2< 1.17 < x/2,

(3.2) c0<x2/4.

The differential equation

(3.3) w" + cw = 0, c>0,

has the solutions

wi(z) = cos (cUH) = 1 + • • • ,

w2(z) = c-"2 sin (c»'2z) =z+ ... , ' 2'

which satisfy conditions (2.2).

Lemma 3.1. Let c0 be the smallest positive root of the equation (1.4).

Letf(z)=c112 cot (cll2z), 0<c^c0. Thenf(z) is univalent in 0< \z\ <1

and maps the interior of the unit circle onto the exterior of a convex region.

The constant Co is the best possible in the sense that for c>Co there is a

point z0, with \z0\ <l,for which

( f"izo)\
mi + zo^^A >o.

V f'izo))

As noted in the introduction, if f(z) is of the form (1.1) and satisfies
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(1.2), then/(z) is univalent for 0<|z| <1. The function/(z) of the

lemma is the ratio Wi(z)/w2(z) of the solutions (3.4) of the differential

equation (3.3). Hence from (2.11)

(3.5) {/(z), z} = 2c g 2co for | z | < 1,

and from (3.2) and (1.2) we conclude that/(z) is univalent for |z| <1.

To establish the convexity of f(z) it will suffice to prove that

/zwl(z)\ (c"2z cos (c1/2z)\
(3.6) m—-1AZ)=3<(-\--) £ 1/2

V w2(z) ) \    sin (c"2z)    )

for \z\ <1 and 0<cgc0. If we substitute z = x+iy in (3.6), simplify,

and rearrange terms, we obtain

sin (c1'2*) cos (cll2x)[2cll2x - tan (c1/2x)l
(3.7) V       n \

^ sinh (c^y) cosh (c^y) [tanh (cl'2y) - 2cl'2y]

for 0<cgc0 and x2+y2gl. It will be noted that equality holds in

(3.7) for x=+l, y = 0, and c = c0. For x2+y2<l, x^O, y^O, and

0<cgc0, the left-hand member of (3.7) is positive while the right-

hand member is either negative or zero. Thus since the map of \z\ =1

is symmetric about the real and imaginary axes, (3.6) is established

and the expression ?H(zw2 (z)/w2(z)) actually attains the value 1/2

for x= +1, y = 0, and c = co. For c = co+«, e>0 and e arbitrarily small,

9t(zw2'(z)/«;2(z))<l/2.

4. Proof of Theorem 1. To facilitate the proof of the theorem two

lemmas will be introduced.

Lemma 4.1. // w(z) satisfies (2.1) with w(0)=0 and w'(0) = l, then

for 0<r<l

.    .    /zw'(z)\        rr ,     . rr \w\2
(4.1) W*R(—-^Jssrl     \w'\2dP-r \   X(z2P(z))u\-,1^dp

\ w(z) J J o Jo P2

for |z| <1.

Let C be a rectifiable curve lying entirely within the unit circle

and joining the origin to any point z within the unit circle. If (2.1)

is multiplied by [w(z)]* (* denotes complex conjugate) and inte-

grated along C, the identity known as Green's transform is obtained.

(4.2) [[w(z)]*w'(z)]'o- f    | w'\2dz*+ f   p(z)\ w\2dz = 0,
J o Jo

\z\  < 1.
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In particular let C be the path from the origin to z = rea along the ray

8 = constant. If we multiply (4.2) by z and take the real part we obtain

(4.1).
This particular form (4.1) of Green's transform appears to have

been first used in a recent paper by Robertson [3].

Lemma 4.2. Let y(p) and y'(p) be continuous real functions of p for

0^p<l. For small values of p let y(p) =0(p). Then

(4.3) 0 g r f   [y'(P)]2dP - cr f   y2(P)dp - c^r cot (c"V) • y\r)
Jo Jo

for 0 < r < 1 and c > 0. Equality holds for

(4.4) y(p) = <r"2 sin (cl'2p), c > 0.

To prove this lemma, consider

(4.5) 0 =g r f ' [y'(p) - c1'2 cot (c^p) ■ y(p)]2dp.
J o

Expanding, integrating the middle term by parts, and simplifying

slightly, we obtain

(4.6) 0 ^ r f ' [y'(p)]2dP - c»'V[cot (c"2p) ■y2^ - rc f'y2(p)dp.
Jo Jo

With some further slight simplification the lemma follows.

Equality will hold in (4.3) if the integrand in (4.5) is zero. The re-

sulting differential equation has (4.4) as a solution.

Theorem 1 now follows quite readily. The univalence of the func-

tion (1.1) is an immediate consequence of (1.3), (3.2), and the cri-

terion of Nehari cited in the introduction.

From (2.11) and (1.3),

I Piz) | ^ Co
so that

(4.7) ft(z2p(z)) ^c0\z\2 for | z | < 1.

If 9t(z2£(z)) is replaced by this bound in (4.1) we obtain

(4.8) | w |"9t( —J ^r f   \w' \2dp - rc0 f   \w \2dp,    0 < r < 1.
\ w / Jo Jo

With z=peu, let w = u(p, 8)+iv(p,8). Along the ray 0 = constant, wis

a function of p. u(p) satisfies the hypotheses of Lemma 4.2 as does

v(p). Substituting these functions in (4.3) we obtain the inequalities
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/2 /* T    2 1/2 1/2 2wp<fp — c0r I    u dp — co r cot (c0 »•)•« (r, 0),

(4.9) J J°
-      . C "    2 C T    2 , V* .1/2.2.
0 g r I    ppap — c0r I    v dp — Co  r cot (c0 r)p (r, 0).

J o Jo

Adding these and simplifying we have

(4.10) r I     | w/ | dp — c0r I     | w \ dp ^ Co r cot (c0  r) | w \ .
Jo Jo

Comparing (4.8) and (4.10) we see that

(4.11) 9J (—\ ^ cTr cot (cTr) for \ z\ < 1.

In Lemma 3.1 it was shown that 9t(c1/2z cot (cll2z)) ^ 1/2 for 0 <c^c0

and \z\ <1. The particular solution w2(z) satisfies the hypothesis of

Lemma 4.1 and may be substituted for w(z) in (4.11). We have finally

(zw2 (z)\ ,    .
-^1^1/2                        for | z | < 1.

w2(z) /

5. Some consequences of Theorem 1.

Corollary 5.1. Let co be the smallest positive root of the equation

(1.4). Let

(5.1) F(z) = z + b2z2+ ■ ■ ■

be analytic in \z\ <1 with

(5.2) | {F(z), z} I g 2c0 >r|z|<l.

Then F(z) maps the interior of the unit circle onto a region which is

starlike with respect to the origin and every circle passing through the

origin cuts the boundary of the region in, at most, two points.

For the function/(z) = 1/F(z) we have

(5.3) {f(z),z} = {F(z),z}.

From (5.2) and Theorem l,/(z) is convex. The boundary of the region

mapped by f(z) is cut by any straight line in, at most, two points.

Under the transformation F(z) = l//(z) the region mapped by f(z)

goes into the region mapped by F(z) and straight lines transform

into circles through the origin. Since/(z) maps each circle \z\ =r<l

onto the exterior of a convex region, and a fortiori a starlike region,
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(5.4) 9^-H_j^o for |*| <1.

But

/zF'(z)\ i/zf'(z)\ .    .
<s-s)        <7sr0--*(7»)so    for|s|<1

and it follows that F(z) is starlike with respect to the origin for \z\ < 1.

Theorem 3. Let

(5.6) g(z) = z + b2z2 + ■ ■ ■

be analytic for \z\ <1 and real on the real axis. Let

(5.7) m{zg'(z),z})^ -y for \z\<l.

Then g(z) is univalent in \z\ < 1 and maps the interior of the unit circle

into a region which is convex in the direction of the imaginary axis. The

constant — x2/2 is the best possible one.

Fejer [l] has shown that if zg'(z) is typically-real, then g(z) is

univalent and convex in the direction of the imaginary axis. The

proof then reduces to showing that zg'(z) is typically-real. For con-

venience let

(5.8) h(z) =zg'(z) =z+ ••• , 1*1 <1-

It follows from the definition of g(z) that h(z) is real for real z. For

any point z0 with | z0| < 1

(5.9) h(zo) = [h(z*0)]*.

If h(z) is to satisfy the differential equation (2.11) then, as noted

earlier, h(z) =yi(z)/y2(z) where yi(z) and y2(z) are any two linearly

independent solutions of (2.1). However, if h(z) is to be of the form

(5.8), the two solutions must be normalized and

Wo(z)
(5.10) h{z)=-\L

wi(z)

where Wi(z) and w2(z) are the two solutions of (2.1) satisfying condi-

tions (2.2).

If h(z) is not typically-real there is a value zu with |zi| <1 and

3(zi) 9*0, and some real number a such that
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(5.11) h(zi) = ft(zt) = «.

This is equivalent to saying that the function w(z) where

(5.12) w(z) = w2(z) — awi(z)

has zeros at Zi and zf. From this point the proof requires but a slight

modification of that of Nehari's Theorem II in [2] and will not be

repeated here.

The function w(z)=e" shows that   —ir2/2 is the best  possible

constant, where w(z) denotes l+7rzg'(z).
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