ON THE RADIAL LIMITS OF ANALYTIC FUNCTIONS

A. J. LOHWATER

1. Examples have been given [5, p. 185] of functions f(z), analytic in the unit-circle K: |z| < 1, and not identically constant, for which the radial limit $f(e^{i\theta}) = \lim_{r \to 1} f(re^{i\theta})$ is zero for all $e^{i\theta}$ on |z| = 1 except for a set of linear measure zero. In view of the Riesz-Nevanlinna theorem [6, p. 197], such functions cannot be bounded, or even of bounded characteristic, in |z| < 1. Functions of this sort appear again whenever we have an analytic function f(z) whose radial limits coincide almost everywhere with the radial limits of a bounded analytic function g(z), for the difference F(z) = f(z) - g(z) has a radial limit zero almost everywhere on |z|=1. The Riesz-Nevanlinna theorem shows that, if f(z) is bounded, or of bounded characteristic, and if the radial limit values of f(z) coincide almost everywhere on an arc of |z|=1with the radial limit values of g(z), then F(z) must be identically zero in |z| < 1. The object of this note is to discuss certain aspects of the behavior of nonconstant analytic functions whose radial limits vanish almost everywhere on an arc $A(\theta_1 < \theta < \theta_2)$ of |z| = 1. One result of such a study (which the author plans as a sequel to this note) will be to give some idea of the way in which a function f(z), whose radial limits coincide almost everywhere with the radial limits of a function g(z) of bounded characteristic, can differ from g(z).

We shall say that a nonconstant function f(z), analytic in |z| < 1, is of class (LP) on an arc A of |z| = 1, if $\lim_{r \to 1} f(re^{i\theta}) = f(e^{i\theta}) = 0$ for almost all $e^{i\theta}$ belonging to the arc A. If the arc A is the whole circumference |z| = 1, we shall say simply that the function f(z) is of class (LP).

One property of functions which are of class (LP) on an arc A is immediate: the cluster set of f(z) at each point $e^{i\theta_0}$ of A (i.e., the set of all values α with the property that there exists a sequence $\{z_n\}$, $|z_n| < 1$, $\lim_{n\to\infty} z_n = e^{i\theta_0}$, such that $\lim_{n\to\infty} f(z_n) = \alpha$ is the whole plane. For, if there is a point $e^{i\theta_0}$ on A and a complex number α which does not belong to the cluster set of f(z) at $e^{i\theta_0}$, then there is a circular neighborhood $V(e^{i\theta_0})$ of $e^{i\theta_0}$ such that, in $V(e^{i\theta_0}) \cap K$, the function $g(z) = [f(z) - \alpha]^{-1}$ is analytic and bounded. Since the function g(z) has the constant limit $-1/\alpha$ along almost all normal segments drawn to that arc of |z| = 1 which bounds $V \cap K$, it follows from a simple corollary of the Riesz-Nevanlinna theorem that g(z), and hence f(z),

Presented to the Society, February 27, 1954; received by the editors April 6, 1954 and, in revised form, May 24, 1954.

must be identically constant in $V \cap K$ and, a fortiori, in |z| < 1. This property, i.e., that the cluster set is the whole plane, sometimes called the Weierstrass property, suggests that we investigate the values ζ which f(z) admits as asymptotic values, i.e., the values to which f(z) tends as z approaches a point P of |z| = 1 along a curve terminating at P. We shall show (Theorem 1) that every complex value ζ (including ∞) is an asymptotic value of a function f(z) of class (LP) provided that the ζ -points, i.e., the points z_k for which $f(z_k) = \zeta$, satisfy the condition

$$(1) \qquad \sum_{k=1}^{\infty} (1 - |z_k|) < \infty.$$

In Theorem 2 we show that a function of class (LP) on an arc A admits every complex number ζ as an asymptotic value in every neighborhood of every point $e^{i\theta}$ of A if the ζ -points in some neighborhood $V(e^{i\theta}) \cap K$ of $e^{i\theta}$ satisfy (1). Theorem 2 then contains Theorem 1, but the proof of Theorem 1 is considerably simpler, and we give a separate proof.

LEMMA 1. Let f(z) be analytic and different from 0 in |z| < 1, and let the modulus $|f(re^{i\theta})|$ have radial limit 1 for almost all $e^{i\theta}$ on |z| = 1. Then unless f(z) is identically constant in |z| < 1, there exists a Jordan arc \mathcal{L} , lying in |z| < 1 and terminating at a point $e^{i\theta_0}$ of |z| = 1, such that, as $z \rightarrow e^{i\theta_0}$ along \mathcal{L} , either $f(z) \rightarrow 0$ or $f(z) \rightarrow \infty$. If there exists no path along which $f(z) \rightarrow 0$, then |f(z)| > 1 in |z| < 1.

Lemma 1 is equivalent to Theorems 5 and 6 of [3], and its proof is omitted here. For brevity, we shall say that a function which is analytic in |z| < 1 and whose modulus $|f(re^{i\theta})|$ has radial limit 1 for almost all $e^{i\theta}$ on |z| = 1 will be called of class (U) in |z| < 1.

THEOREM 1. If f(z) is analytic in |z| < 1 and of class (LP), then every complex number (including ∞) which satisfies (1) is an asymptotic value of f(z).

Assume that a finite ζ satisfying (1) is not an asymptotic value of f(z); clearly, we need not consider the case that $\zeta = 0$. Since f(z) is of class (LP), the function $\phi(z) = \zeta^{-1}[\zeta - f(z)]$ has radial limit 1 almost everywhere and is then of class (U) in |z| < 1. Because the ζ -points of f(z) satisfy (1), we may write $\phi(z) = B_{\zeta}(z) F(z)$, where $B_{\zeta}(z)$ is a Blaschke product extended over the zeros of $\phi(z)$. It is well known [7, p. 94] that the radial limits of a Blaschke product exist and have modulus 1 almost everywhere on |z| = 1. From this it follows that F(z) is of class (U) without zeros in |z| < 1. It is then a conse-

quence of Lemma 1 that, unless F(z) is identically constant, F(z) must admit either 0 or ∞ as an aymptotic value. We remark first that F(z) cannot be constant; for if $\phi(z)$ reduces to a Blaschke product whose radial limit is 1 almost everywhere, the Riesz-Nevanlinna theorem shows that $\phi(z)$, and consequently f(z), is constant. We assert next that 0 must be an asymptotic value of F(z); otherwise |F(z)| > 1 in |z| < 1, so that $\phi(z)$ could be expressed as the quotient of two bounded functions in |z| < 1, i.e., $\phi(z)$ would be of bounded characteristic in |z| < 1. Again, by the Riesz-Nevanlinna theorem, $\phi(z)$ would be constant in |z| < 1. Since zero must now be an asymptotic value of F(z), and since $B_f(z)$ is bounded, $\phi(z)$ must admit zero as an asymptotic value, so that ζ is an asymptotic value of f(z).

To show that f(z) admits ∞ as an asymptotic value, we remark that the function $g(z) = e^{f(z)}$ is of class (U) without zeros in |z| < 1. Applying Lemma 1 to g(z), we see that, since g(z) is not constant, g(z) admits either 0 or ∞ as an asymptotic value, so that there exists at least one path \mathcal{L} terminating at some point $e^{i\theta_0}$ of |z| = 1 along which $f(z) \to \infty$. Thus Theorem 1 is proved.

We remark that Theorem 1 is related to a recent result of Cartwright and Collingwood [2, p. 112], the added hypothesis that f(z) be of class (LP) in |z| < 1 allowing us to obtain a stronger conclusion to part of Theorem 9 of their paper.

2. In order to determine how frequently a function of class (LP) admits as an asymptotic value a complex number ζ satisfying (1), it will be necessary to use a form of the Schwarz reflection principle developed recently in [4]. We summarize this principle as a lemma.

LEMMA 2. Let f(z) be meromorphic in |z| < 1 and let A be the arc $0 \le \theta_1 < \theta < \theta_2 < 2\pi$. Let there exist an $\epsilon > 0$ such that f(z) has no zeros or poles in the region $0 < 1 - |z| < \epsilon$, $\theta_1 < \arg z < \theta_2$, and let the modulus $|f(re^{i\theta})|$ have radial limit 1 for almost all $e^{i\theta}$ on A. Then a necessary and sufficient condition that f(z) may be continued analytically across the arc A by means of the reflection principle $f(\bar{z}) = 1/\bar{f}(1/z)$ is that f(z) admit neither 0 nor ∞ as an asymptotic value on A.

We proceed now to the principal result of this paper.

THEOREM 2. Let f(z) be analytic in |z| < 1 and of class (LP) on an arc $\alpha < \theta < \beta$ of |z| = 1. Let A be an arbitrary sub-arc of (α, β) and ζ an arbitrary complex number (including ∞). If there is a neighborhood

¹ The method of proof of the previous paragraph shows also that ∞ is an asymptotic value of F(z), but the presence of the factor $B_{\ell}(z)$ precludes an immediate inference that ∞ is an asymptotic value of $\phi(z)$, and, consequently, of f(z).

 $V(e^{i\theta_A}) \cap K$ of the midpoint $e^{i\theta_A}$ of A in which the ζ -points of f(z) satisfy (1), then there exists a point $e^{i\theta_0}$ on that part of A which bounds $V \cap K$, and a Jordan arc \mathcal{L} of |z| < 1 terminating at $e^{i\theta_0}$ such that $f(z) \rightarrow \zeta$ as $z \rightarrow e^{i\theta_0}$ along \mathcal{L} .

Let us suppose that there exists an arc A ($\theta_1 < \theta < \theta_2$), with midpoint $e^{i\theta_A}$ and contained in (α, β) , and a complex number ζ satisfying (1) in some neighborhood $V(e^{i\theta_A}) \cap K$ which f(z) does not admit as an asymptotic value on that subarc B of A which bounds $V(e^{i\theta_A}) \cap K$. The case $\zeta = 0$ being trivial, we may suppose that ζ is not 0, and, for the moment, not ∞ . Since f(z) is of class (LP) on A, the function $\phi(z) = \zeta^{-1}[\zeta - f(z)]$ is analytic in |z| < 1 and has radial limit 1 for almost all $e^{i\theta}$ on A. Since the ζ -points of f(z) satisfy (1) in $V(e^{i\theta_A}) \cap K$, we may write, as before, $\phi(z) = B_1(z)F(z)$, where $B_1(z)$ is a Blaschke product extended over the zeros of $\phi(z)$ in $V(e^{i\theta_A}) \cap K$, and where F(z) is analytic without zeros in $V(e^{i\theta_A}) \cap K$. The function F(z) must possess radial limit values of modulus 1 for almost all $e^{i\theta}$ on B. It cannot happen that F(z) is the quotient of two bounded functions $V(e^{i\theta_A}) \cap K$; for otherwise the Riesz-Nevanlinna theorem would imply that $\phi(z)$, and consequently f(z), is identically constant. Furthermore, it is clear that no point of B can be a regular point of F(z). It follows from Lemma 2 that the set of singularities of F(z) on B (namely, all points of B) is the closure of the set of points $e^{i\theta}$ on B which are the terminal points of Jordan arcs along which either F(z) $\rightarrow 0$ or $F(z) \rightarrow \infty$. A simple modification of a result of Carathéodory [1, pp. 266–267] and the author [3, p. 251] shows that, unless |F(z)|>1 in $V(e^{i\theta_A}) \cap K$, F(z) must admit zero as an asymptotic value on B. Now if |F(z)| > 1 in $V(e^{i\theta_A}) \cap K$, then $\phi(z)$ is the quotient of two bounded functions in that region and, according to the corollary of the Riesz-Nevanlinna theorem, must be identically constant. Since F(z) must admit 0 as an asymptotic value on B, the boundedness of $B_r(z)$ implies that 0 is an asymptotic value of $\phi(z)$ on B, so that ζ is an asymptotic value of f(z) on B. This contradiction proves Theorem 2 for the case that $|\zeta| < \infty$. For the case that $\zeta = \infty$, we apply Lemma 2 directly to the function $g(z) = e^{f(z)}$, thus completing the proof of Theorem 2.

REFERENCES

- 1. C. Carathéodory, Zum Schwarzschen Spiegelungsprinzip, Comment. Math. Helv. vol. 19 (1946-47) pp. 263-278.
- 2. E. F. Collingwood and M. L. Cartwright, Boundary theorems for a function meromorphic in the unit circle, Acta Math. vol. 87 (1952) pp. 83-146.
- 3. A. J. Lohwater, The boundary values of a class of meromorphic functions, Duke Math. J. vol. 19 (1952) pp. 243-252.

- 4. ——, Les valeurs asymptotiques de quelques fonctions méromorphes dans le cercle-unité, C. R. Acad. Sci. Paris vol. 237 (1953) pp. 16-18.
- 5. N. Lusin and J. Privaloff, Sur l'unicité et la multiplicité des fonctions analytiques, Ann. École Norm. (13) vol. 42 (1925) pp. 143-191.
 - 6. R. Nevanlinna, Eindeutige analytische Funktionen, Berlin, Springer, 1936.
- 7. F. Riesz, Über die Randwerte einer analytischen Funktion, Math. Zeit. vol. 18 (1923).

University of Michigan

MULTIPLICATIVE GROUPS OF ANALYTIC FUNCTIONS

WALTER RUDIN

Let D be a proper subdomain of the Riemann sphere, and let M(D) be the multiplicative group of all regular single-valued analytic functions on D which have no zeros in D. It is known [1] that the algebraic structure of the ring R(D) of all regular single-valued analytic functions on D determines (and is determined by) the conformal type of D. In this paper we ask the question: what information about D does the algebraic structure of M(D) give, and, conversely, which properties of D determine the algebraic structure of M(D)? The answer is, briefly, that $M(D_1)$ and $M(D_2)$ are isomorphic if and only if D_1 and D_2 have the same connectivity.

Here the connectivity of D is k if the complement of D has k components, and is ∞ if the complement of D has infinitely many (countable or power of the continuum) components. The structure of M(D) is described in more detail in the theorem below.

If we associate with each $f \in M(D)$ the function g = f/|f| we obtain a subgroup (isomorphic to M(D)) of the multiplicative group C(D) of all continuous functions from D into the unit circumference. Such functions have been studied in great detail by Eilenberg [2]. It is worth noting that our theorem is valid if we replace M(D) by C(D), and that the proof is essentially the same; but it seems more interesting to stay within the smaller group.

Before stating the theorem, it is convenient to define two subgroups of M(D).

(1) Fix a point $z_0 \in D$ and let G(D) be the set of all $f \in M(D)$ such that $f(z_0) = 1$. Then M(D) is the direct product of G(D) and the multiplicative group of the nonzero complex numbers, and G(D)

Presented to the Society, April 24, 1954; received by the editors March 23, 1954.