
ON THE RADIAL LIMITS OF ANALYTIC FUNCTIONS
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1. Examples have been given [5, p. 185] of functions/(z), analytic

in the unit-circle K: \z\ <1, and not identically constant, for which

the radial limit f(eie) =limr,^-(re") is zero for all e* on \z\ =1 ex-

cept for a set of linear measure zero. In view of the Riesz-Nevanlinna

theorem [6, p. 197], such functions cannot be bounded, or even of

bounded characteristic, in \z\ < 1. Functions of this sort appear again

whenever we have an analytic function f(z) whose radial limits coin-

cide almost everywhere with the radial limits of a bounded analytic

function g(z), for the difference F(z) =f(z) —g(z) has a radial limit zero

almost everywhere on \z\ =1. The Riesz-Nevanlinna theorem shows

that, if f(z) is bounded, or of bounded characteristic, and if the radial

limit values of f(z) coincide almost everywhere on an arc of \z\ =1

with the radial limit values of g(z), then F(z) must be identically zero

in \z\ <1. The object of this note is to discuss certain aspects of the

behavior of nonconstant analytic functions whose radial limits vanish

almost everywhere on an arc A(di<B<62) of \z\ =1. One result of

such a study (which the author plans as a sequel to this note) will be

to give some idea of the way in which a function f(z), whose radial

limits coincide almost everywhere with the radial limits of a function

g(z) of bounded characteristic, can differ from g(z).

We shall say that a nonconstant function/(z), analytic in |z| <1,

is of class (LP) on an arc A of |z| =1, if limrH.i/(re*) =f(ea)=0 for

almost all eu belonging to the arc A. If the arc A is the whole cir-

cumference \z\ =1, we shall say simply that the function/(z) is of
class (LP).

One property of functions which are of class (LP) on an arc A is

immediate: the cluster set of f(z) at each point ew° of A (i.e., the set of

all values a with the property that there exists a sequence {z»}, |z„|

<1, limn-.. z„ = eM°, such that limn-.K f(zn) =a) is the whole plane. For,

if there is a point e**° on A and a complex number a which does not

belong to the cluster set of f(z) at e16", then there is a circular neigh-

borhood V(ea«) of e** such that, in V(ea")r\K, the function g(z)

= [f(z)—a.]~1 is analytic and bounded. Since the function g(z) has

the constant limit —1/a along almost all normal segments drawn to

that arc of |z| =1 which bounds VC\K, it follows from a simple

corollary of the Riesz-Nevanlinna theorem that g(z), and hence f(z),
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must be identically constant in VC\K and, a fortiori, in \z\ <1. This

property, i.e., that the cluster set is the whole plane, sometimes

called the Weierstrass property, suggests that we investigate the

values f which f(z) admits as asymptotic values, i.e., the values to

which f(z) tends as z approaches a point P of \z\ =1 along a curve

terminating at P. We shall show (Theorem 1) that every complex

value f (including <x>) is an asymptotic value of a function f(z) of

class (LP) provided that the f-points, i.e., the points zk for which

f(zk) =£, satisfy the condition

(i) i; u-i «*ix«.

In Theorem 2 we show that a function of class (LP) on an arc A ad-

mits every complex number f as an asymptotic value in every neigh-

borhood of every point cw of A if the f-points in some neighborhood

V(e*)r\K of e* satisfy (1). Theorem 2 then contains Theorem 1, but

the proof of Theorem 1 is considerably simpler, and we give a sepa-

rate proof.

Lemma 1. Letf(z) be analytic and different from 0 in \z\ <1, and let

the modulus \f(rea)\ have radial limit 1 for almost all e* on \z\ =1.

Then unless f(z) is identically constant in \z\ <1, there exists a Jordan

arc «£, lying in \z\ <1 and terminating at a point ea<> of \z\ =1, such

that, as z—>eu° along £, either f(z) —>0 or f(z) —*<x>. If there exists no path

along which f(z)—>0, then \f(z)\ >1 in \z\ <1.

Lemma 1 is equivalent to Theorems 5 and 6 of [3], and its proof is

omitted here. For brevity, we shall say that a function which is

analytic in \z\ <1 and whose modulus [/(re")] has radial limit 1 for

almost all ea on \z\ =1 will be called of class (U) in \z\ <1.

Theorem 1. Iff(z) is analytic in \z\ <1 and of class (LP), then every

complex number (including °°) which satisfies (1) is an asymptotic

value of f(z).

Assume that a finite f satisfying (1) is not an asymptotic value of

f(z); clearly, we need not consider the case that f = 0. Since f(z) is of

class (LP), the function 4>(z) =f-1[r_f(z)] has radial limit 1 almost

everywhere and is then of class (U) in \z\ <1. Because the f-points

of f(z) satisfy (1), we may write <t>(z)=Bt(z)F(z), where B((z) is a

Blaschke product extended over the zeros of <b(z). It is well known

[7, p. 94] that the radial limits of a Blaschke product exist and

have modulus 1 almost everywhere on \z\ =1. From this it follows

that F(z) is of class (U) without zeros in \z\ <1. It is then a conse-
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quence of Lemma 1 that, unless F(z) is identically constant, F(z)

must admit either 0 or » as an aymptotic value. We remark first

that F(z) cannot be constant; for if </>(z) reduces to a Blaschke prod-

uct whose radial limit is 1 almost everywhere, the Riesz-Nevanlinna

theorem shows that d>(z), and consequently/(z), is constant. We assert

next that 0 must be an asymptotic value of F(z); otherwise | F(z) \ > 1

in |z| <1, so that <p(z) could be expressed as the quotient of two

bounded functions in \z\ < 1, i.e., <b(z) would be of bounded character-

istic in |z| <1. Again, by the Riesz-Nevanlinna theorem, <f>(z) would

be constant in \z\ <1. Since zero must now be an asymptotic value of

F(z), and since Bt(z) is bounded, <b(z) must admit zero as an asymp-

totic value, so that f is an asymptotic value of f(z).

To show that/(z) admits oo as an asymptotic value,1 we remark

that the function g(z)=efU) is of class (U) without zeros in \z\ <1.

Applying Lemma 1 to g(z), we see that, since g(z) is not constant,

g(z) admits either 0 or oo as an asymptotic value, so that there exists

at least one path .£ terminating at some point c**0 of \z\ =1 along

which f(z)—*oo. Thus Theorem 1 is proved.

We remark that Theorem 1 is related to a recent result of Cart-

wright and Collingwood [2, p. 112], the added hypothesis that/(z)

be of class (LP) in \z\ < 1 allowing us to obtain a stronger conclusion

to part of Theorem 9 of their paper.

2. In order to determine how frequently a function of class (LP)

admits as an asymptotic value a complex number f satisfying (1),

it will be necessary to use a form of the Schwarz reflection principle

developed recently in [4]. We summarize this principle as a lemma.

Lemma 2. Let f(z) be meromorphic in \z\ <1 and let A be the arc

0^0i<8<d2<2ir. Let there exist an e>0 such that f(z) has no zeros or

poles in the region 0<1 — \z\ <e, 0i<arg z<d2, and let the modulus

\f(reu) | have radial limit 1 for almost all e* on A. Then a necessary and

sufficient condition that f(z) may be continued analytically across the arc

A by means of the reflection principle f(z) = l/f(l/z) is that f(z) admit

neither 0 nor oo as an asymptotic value on A.

We proceed now to the principal result of this paper.

Theorem 2. Letf(z) be analytic in \ z\ < 1 and of class (LP) on an arc

a<0<fi of \z\ =1. Let A be an arbitrary sub-arc of (a, fi) and f an

arbitrary complex number (including  »). If there is a neighborhood

1 The method of proof of the previous paragraph shows also that °° is an asymp-

totic value of F(z), but the presence of the factor Bt(z) precludes an immediate infer-

ence that =o is an asymptotic value of <j>(z), and, consequently, of f(z).
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V(e*A)r\K of the midpoint ei$A of A in which the {-points of f(z) satisfy

(1), then there exists a point etf° on that part of A which bounds VC\K,

and a Jordan arc J(^of \z\ <1 terminating at eu" such that f(z)—*{ as

z—>e**° along J\

Let us suppose that there exists an arc A (0i <d <$i), with midpoint

eaA and contained in (a, /3), and a complex number f satisfying (1)

in some neighborhood V(ei>A)r\K which f(z) does not admit as an

asymptotic value on that subarc B of A which bounds V(eVA)(~\K.

The case f = 0 being trivial, we may suppose that f is not 0, and, for

the moment, not °°. Since f(z) is of class (LP) on A, the function

4>(z) =f-1[f_f(z)] is analytic in \z\ <1 and has radial limit 1 for
almost all eu on A. Since the f-points of f(z) satisfy (1) in V(eUA)r\K,

we may write, as before, <p(z) =Bt(z)F(z), where Bt(z) is a Blaschke

product extended over the zeros of <j>(z) in V(e<,A)r\K, and where

F(z) is analytic without zeros in V(ei$A)r\K. The function F(z) must

possess radial limit values of modulus 1 for almost all etf on B. It

cannot happen that F(z) is the quotient of two bounded functions

V(e*A)r\K; for otherwise the Riesz-Nevanlinna theorem would im-

ply that <b(z), and consequently/(z), is identically constant. Further-

more, it is clear that no point of B can be a regular point of F(z). It

follows from Lemma 2 that the set of singularities of F(z) on B

(namely, all points of B) is the closure of the set of points e" on B

which are the terminal points of Jordan arcs along which either F(z)

—*0 or F(z)—*«. A simple modification of a result of Caratheodory

[l, pp. 266-267] and the author [3, p. 251 ] shows that, unless | F(z) |

> 1 in V(eaA)(~\K, F(z) must admit zero as an asymptotic value on B.

Now if \F(z)\ >1 in V(e*A)C\K, then 4>(z) is the quotient of two

bounded functions in that region and, according to the corollary of

the Riesz-Nevanlinna theorem, must be identically constant. Since

F(z) must admit 0 as an asymptotic value on B, the boundedness of

Br(z) implies that 0 is an asymptotic value of <j>(z) on B, so that f

is an asymptotic value of f(z) on B. This contradiction proves

Theorem 2 for the case that | f | < oo. For the case that f = », we

apply Lemma 2 directly to the function g(z)=eM, thus completing

the proof of Theorem 2.
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MULTIPLICATIVE GROUPS OF ANALYTIC FUNCTIONS

WALTER RUDIN

Let D be a proper subdomain of the Riemann sphere, and let M(D)

be the multiplicative group of all regular single-valued analytic

functions on D which have no zeros in D. It is known [l ] that the

algebraic structure of the ring R(D) of all regular single-valued

analytic functions on D determines (and is determined by) the con-

formal type of D. In this paper we ask the question: what informa-

tion about D does the algebraic structure of M(D) give, and, con-

versely, which properties of D determine the algebraic structure of

M(D) ? The answer is, briefly, that M(Di) and M(D2) are isomorphic

if and only if Di and D2 have the same connectivity.

Here the connectivity of D is k if the complement of D has k

components, and is oo if the complement of D has infinitely many

(countable or power of the continuum) components. The structure

of M(D) is described in more detail in the theorem below.

If we associate with each f EM(D) the function g=//|/| we obtain

a subgroup (isomorphic to M(D)) of the multiplicative group C(D)

of all continuous functions from D into the unit circumference. Such

functions have been studied in great detail by Eilenberg [2]. It is

worth noting that our theorem is valid if we replace M(D) by C(D),

and that the proof is essentially the same; but it seems more interest-

ing to stay within the smaller group.

Before stating the theorem, it is convenient to define two sub-

groups of M(D).

(1) Fix a point ZoED and let G(D) be the set of all fEM(D) such
that/(20) = 1. Then M(D) is the direct product of G(D) and the

multiplicative group of the nonzero complex numbers, and G(D)

Presented to the Society, April 24,1954; received by the editors March 23, 1954.


