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1. Introduction. Let (R, +, •) be any ring (not necessarily asso-

ciative) with identity 1, and let (S, +) be the subgroup of (R, +)

generated by 1. The present paper results from meditations upon the

following well-known facts:

(a) S is a subring of R and a homomorphic image of a certain

"universal" ring (the ring of rational integers).

(b) If (A, +) is the (necessarily cyclic) free group on the free

generator 1, A may be turned into the ring of rational integers by a

group-theoretic introduction of multiplication: yx is the image of y

under the endomorphism of (A, +) which maps 1 on x.

(c) The homomorphism of (A, +) upon (S, +) which maps 1 on 1

also preserves multiplication.

(d) (A, +, •) is a commutative associative ring without nontrivial

zero divisors (an integral domain). Every additive subgroup of A is

a subring.

(e) If R is a ring without nontrivial zero divisors and if T is a sub-

ring of the centre of R which contains a nonzero element /, there

exists an isomorphism mapping T into its quotient field T//T and

R into ring R//T of formal fractions x/t, xER, tET, r^O (with the

familiar definitions1 of equality, multiplication and addition)*, namely,

x^(fx)/f.
We shall show that if, in (b), (A, +) is replaced by the free loop

of rank one, the endomorphisms determine a system (A, +, •) lack-

ing one distributive law but with desirable properties and a rich sub-

structure. In particular, a suitable widening of the notion of ring (to

allow nonassociative addition) preserves both (a) and (c). Then (d)

remains true with obvious changes in wording, provided the adjec-

tive "commutative" is deleted. And, finally, (e) has a perfect ana-

logue.

The paper touches on a number of unsolved problems which seem

worthy of study.

2. Neorings. A system (R, +, •) with two single-valued binary

operations will be called a right neoring provided:

(i)  (R, +) is a loop with zero 0.

Received by the editors April 27, 1954.
1 For the precise definitions see Theorem 2.2 below. The construction was used by

Bruck and Kleinfeld [l]. (Numbers in square brackers refer to the bibliography at

the end of the paper.)
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(ii) R is closed under (■) and x0=0 for all * in R.

(iii)  (x+y)z = xz+yz for all x, y, z in R.

And a right neoring R will be called a neoring if also

(iv) x(y+z) =xy+xz for all x, y, z in R.

Just as with rings, adjectives such as "commutative," "associa-

tive," "division," when modifying "(right) neoring," refer to multi-

plication. The prefix "neo" warns that the additive system is a loop

but not necessarily an abelian group. Associative division neorings

have been studied by Paige [2] under the name of neofields; we,

however, reserve the name neofield for a commutative, associative

division neoring. And finally, by an integral neodomain we mean a

commutative associative neoring with at least two elements and with

no nontrivial zero divisisors.

The left nucleus of a right neoring R is the set of all a in R such that

axy = axy for all x, y in R; the left nucleus is2 a right subneoring of

R. The centre of a neoring R is the subset (and subneoring) of R con-

sisting of all a in R such that ax = xa, axy = axy=xay for all x, y

in R. The following theorem is actually two theorems superimposed:

Theorem 2.1. Let R be a (right) neoring with (left) identity 1. Then

the subloop (S, +) of (R, +) generated by 1 is a (right) subneoring

(S, +, ■) contained in the (left nucleus) centre of R.

Proof. The final clause of the theorem should be clear. Let T be the

set of all tinS such that tSES. Then 1 is in T. If t, t' are in T and if

t+t'=x, t+y=t', z+t = t', then, by (iii), for all 5 in S, ts+t's = xs,

ts+ys=t's, zs+ts = t's. Hence x, y, z are in T, showing that (T, +)

is a subloop of (S, +). Since T contains the generator 1 of 5, T = S.

Therefore SSES, and the proof is complete.

Theorem 2.2. Let the neoring R contain in its centre a subneoring D

such that (a) D contains at least one nonzero element f; (b) no nonzero

element of D is a zero divisor in R. Then D is an integral neodomain

and the mapping x-+(fx)/f is an isomorphism of R into a neoring

R//D (and of D into its quotient neofield D//D) consisting of formal

fractions x/a, xER, aED, a9*0, subject to the following rules: (I)

x/a=y/b+±bx = ay; (II) (x/a)(y/b)=(xy)/(ab); (III) (x/a) + (y/b)
= (bx+ay)/(ab).

Proof. The proof follows familiar lines. We merely remark that the

(unique) solutions U, Fin R//D of (x/a) + U = y/b, V+(x/a)=y/b

are given by U = u/(ab), V = v/(ab) where, in R, bx+u=ay, v+bx

1 This remark I owe to Daniel R. Hughes, whose incisive comments led me to (4.5)

and Lemma 3.1.
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= ay. It is perhaps surprising that the usual properties of addition

are quite unnecessary here, whereas the multiplicative properties of

D are much needed.

3. The free loop of rank one. Let F be an (additively written) free*

loop on a single free generator X. The salient fact about F is that if

L is any additive loop and a any element of L, the mapping A—>a can

be extended uniquely to a homomorphism, say 8, of F into L. If we

regard each element of F as a (nonassociative) word W= W(X), we

define W(a) as the image, W(X)6, of W(X) under 8. This turns each

word W into a function defined on every loop. Moreover, if 0 is a

homomorphism of L into a loop, W(a)<j>= W(ad>), since 8<p maps X

upon acp.

Now specialize. Let (L, +) be generated by a single element 1 and

let 8 be the homomorphism of F into L such that X8 = 1. Since 1 gen-

erates L, 8 is upon L. Therefore every element of L has the form W(l)

for at least one word W of F. If a is an endomorphism of L and if

la = a, then W(l)a= W(a) for every word W. Hence, as is intuitively

obvious: every endomorphism of L is uniquely determined by its effect

on 1. Moreover, a must satisfy the following condition: (*) if W, W

are words such that W(l) = W'(l), then W(a) = W'(a). Conversely,

if a is any element of L which satisfies (*), the mapping W(l)—*W(a)

of L is well-defined. Moreover, this mapping is an endomorphism of

L, since Wi+W2 = W3 implies Wi(l) + W2(l) = W3(l), Wi(a) + W2(a)

= Wz(a). Call the endomorphism a. Let Wo(X) be any word such

that Wo(l)=a. Then there is a unique endomorphism 8 of F such

that XB = Wt(X), namely, W(X)B=W(Wo(X)) for every word

W. And W(X)B8 = W(Wo(X))8=W(Wo(X)8) = W(W0(1)) = W(a)
= W(l)a=W(X)8a. Since this is true for every word W(X), B8 = 9a.

We sum up our results in a lemma:

Lemma 3.1. Let F be the additive free loop on one free generator X. Let

L be any additive loop generated by a single element 1 and let 8 be the

homomorphism of F upon L such that X9 = l. Then every endomorphism

of L is induced by suitable endomorphisms of F. More specifically, if a

is an endomorphism of L, then B8=8a for every endomorphism B of F

such that XB8 = la.

Corollary 1. For each a in L there is at most one endomorphism a

of L such that la = a.

Corollary 2. If, for every a in L, there is at least one endomorphism

8 The present discussion is somewhat informal. For a careful study of free loops

see Bates [3]. Some of the present remarks are repeated from Bruck [4].
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a of L such that la = a, then every endomorphism of F induces an endo-

morphism of L.

4. A universal right neoring. For reasons soon to be evident we now

replace F by the (isomorphic) additive free loop (A, +) on one free

generator 1. For any x in A there is a unique endomorphism of

(A, +), call it <p(x), such that l<b(x) =x. We define multiplication in

A by

(4.1) yx = y<f>(x), all x, y in A.

This turns A into a right neoring (A, +, ■). Indeed, 0(0) is the zero

endomorphism, so x0=0 for all x in A; and postulates (i), (ii), (iii)

are otherwise clear. Also lx=x by definition; and xl=x since 0(1)

is the identity endomorphism of A:

(4.2) lx = xl = x, all x in A.

Moreover, (A, +, •) is associative. Indeed, every endomorphism of

(A, +) has the form <j>(a). Thus, since l<b(x)<j>(y) =x<f>(y) =xy,

(4.3) <b(x)<b(y) = 4>(xy),        (zx)y = z(xy),       all x, y, z in A.

The right neoring (A, +, ■) is universal in the following sense:

Theorem 4.1. Let (R, +, ■) be a right neoring with left identity 1

such that 1 generates the additive loop (R, +).Let 8 be the homomorphism

of (A, +) upon (R, + ) such that 18 = 1. Then 8 is a homomorphism of

(A, +,   )upon (R, +,   ):

(x+ y)0 = xd + yd,        (xy)8 = (xd)(y6)

for all x, y in A. In particular, (R, ■) is a semigroup with two-sided

identity 1.

Proof. We merely quote Lemma 3.1 and its Corollary 2, with L,

F replaced by (R, +), (A, +) respectively. Indeed, (xy)8 = x<j>(y)8

= xd<p(y8) = (x8)(y8), where <p(a) denotes the unique endomorphism

of (R, +) which maps 1 on a. The concluding sentence of the Theo-

rem is clear from (4.2), (4.3).

We now examine further the properties of (A, +, ■).

Lemma 4.1. (A, +, ■) satisfies both cancellation laws:

(4.4) xz = yz, z 9* 0->- x = y;

(4.5) zx = zy, z 9* 0 ->- x = y.

Proof. (4.4). If z=^0, <b(z) maps (A, +) upon the nontrivial sub-

loop (B, +) generated by z. By a property of free loops (Bates [3]),
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(B, +) is free with free generator z. Hence (B, +) possesses a homo-

morphism a upon (A, +) such that za = l. Then <b(z)a is the identity

endomorphism of (A, +), since l<p(z)a = l. Consequently <b(z) is one-

to-one, proving (4.4).

(4.5). We need some knowledge of the manner4 in which (.4, +) is

generated. We begin with a system consisting of two elements 0, 1

and addition defined only as follows: 0+0=0, 0 + 1 = 1+0 = 0. Then

we fill out A in stages, always preserving the property 0+a=a+0

= 0, by "freely" adjoining in regular alternation (i) all elements p

such that a, b are present, p is not, and a+b=p; (ii) all elements g

such that a, b are present, g is not, and a+q = b; (iii) all elements r

such that a, b are present, r is not, and r+a = b. Now consider two

elements x, y of A, with X9*y, and let B be the subset of A consisting

of all elements z of A such that zd>(x) 9*z<b(y). Of course 0 is not in B,

but 1 is in B. Furthermore, if, in (i), a, b are in B, then the "freeness"

of p implies6 that p is in B. Similarly for (ii), (iii). Consequently,

B contains every nonzero element of A. Therefore Z9*0, xj*y implies

zx9*zy, whence we deduce (4.5).

Lemma 4.2. If (B, +) is any subloop of (A, +), then (B, +, ■) is a
right subneoring of (A, +, ■). Indeed,

(4.6) AB = B.

Proof. If b is in B, <p(b) maps A upon the additive subloop {b}

generated by b; that is, Ab= {b}. Therefore we have (4.6).

* See footnote 3.

5 The implication reflects the fact that the only forced identifications in the

construction are those of form 0+k=k, k+0 = k. A detailed examination of the

points involved, even in quite informal terms, would be prohibitively long. We give

a brief indication. Since X7^y, at most one of x, y is 0 or 1; and cases such as x = 0,

y = l will be omitted as trivial. Then at least one of p<j>(x), p<t>{y) must first turn up

in the construction at at least as late a stage as does p, essentially because at least

one of *, y first turns up later than does 1. Since we are to disprove that p<j>(x) —p<t>(y),

we need only consider the critical case that both of p(f>(x), p<f>(y) first appear at the

same stage of the construction. At this stage, which is necessarily an extension of

type (i), the only sums involving p<t>(x) are 0-fp<t>{x) =p<j)(x), p<j>(x)+0=p<l>(x),

a<j>(x)+b<t>(x) =p4>(x); and similarly with x replaced by y. Since a, b are in B, ad>(x)

?*a<j>(y) and b<j>(x) ^b<t>(y). The proof now hinges on (*): a<j>(x), a<t>(y), b<j>(x), b<t>(y)

are all nonzero. For, if (*) holds, necessarily p4>{x)^p<j>(y). To prove (*), suppose,

for example, that a<t>(x) =0; then, also, b<t>(x) =p<j>(x). If x = 0, then p<t>(x) =0, contra-

dicting the hypothesis that p<f>(x), p<j>(y) first appeared together and not before the

(constructed) element p. If x?*0, then, by (4.4), b=p, contradicting the fact that p

first appeared later than b. Hence (*) holds and p is in B. The changes to be made in

connection with (ii) or (iii) are quite minor; there, however, we must add the case

that 6 = 0 and a is in B.



i955l ANALOGUES OF THE RING OF RATIONAL INTEGERS 55

As Bates [3] shows, every subloop of (A, +) is free and, moreover,

(A, +) contains subloops of countable rank and (hence) subloops

of every finite rank. Thus Lemmas 4.2, 4.1 yield the following:

Theorem 4.2. Let (F, +) be a free loop of finite or countable rank.

Then (F, +) can be imbedded in at least one associative right neoring

(F, +, •) which satisfies the cancellation laws (4.4), (4.5) awd the rela-

tion FGEG for every subloop (G, +) of (F, +).

It is to be noted, however, that, in Lemma 4.2, (B, +, ■) has no

identity element unless B=A. And the question remains open as

to whether there are "universal" right neorings of arbitrary rank as

additive free loops.

In view of Theorems 4.1, 4.2, it is of interest to characterize the

kernels of homomorphisms of a right neoring (R, +, •) upon right

neorings. Such a kernel must, of course, be a normal subloop of

(R, +)•

Lemma 4.3. Let (K, +) be a normal subloop of the additive loop

(R, +) of a right neoring (R, +, •). Then the following properties are

n.a.s.c. that K be the kernel of a homomorphism of (R, +, •) upon a

right neoring:

(a) KR C K;

(b) x(y + K) C xy + K, all x, y in R.

Proof. Necessity. Let <f> be a homomorphism, with kernel K, of R

upon a right neoring. If kEK, xER, (kx)<b = k<px<p = Ox<l> = 0, so

kxEK. This proves (a). Again, (x(y+k))<p = x<p-(y + k)<p=x<p- (y<f>

+kq>) = xq>■ y<p = (xy)4>, so x(y-\-k)Exy-\-K, proving (b).

Sufficiency. Since (K, +) is normal in (R, +), the mapping <f> de-

fined by x<f> = x-\-K is a homomorphism of (R, +) upon a loop

(R/K, ©) where © is defined by (x+K)@(y+K) =xy+K. If

x, yER, ft, k'EK, then (a), (b) and the normality of K yield, mod K,

(x+ft)(y+ft')— x(y+k')-\-k(y+k')= xy+0= xy. Hence multiplica-

tion O can be defined unambiguously in R/K by (x+A)Q(y+A)

= xy+A. Then <p is a homomorphism of R upon a right neoring

(R/K, ©, O).
In any right neoring (R, +, •) define the commutators (x, y) by

(4.7) xy = yx + (x, y).

Lemma 4.4. Let (K, +) be a normal subloop of the additive loop of a

right neoring R. Then n.a.s.c. that K be the kernel of a homomorphism

of R upon a commutative neoring are: (a) (of Lemma 4.3) and
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(c) (x, y) E K, all x, y in R.

Corollary. In the case of (A, +, ■), (c) alone is n.a.s.c.

Proof, (a), (c) are clearly necessary. Conversely, by (a), (c) and

the normality of K we have, mod K, x(y+ft) = (y+ft)x=yx+ftx

=yx=xy. This proves (b) of Lemma 4.3; and (a), (b), (c) are clearly

sufficient. In the case of the corollary, by (4.6), (c) implies (a).

Returning to A, we note, from Lemma 4.4 and corollary, that, if

(N, +) is the smallest normal subloop of (A, +) containing all mul-

tiplicative commutators (x, y), then (A/N, +, •) is a commutative

associative neoring with identity, additively generated by its iden-

tity. Clearly, (A/N, +, •) is universal for all such neorings and, in

particular, for all integral neodomains with identity which are addi-

tively generated by the identity. But there remains the question:

Is (A/N, +, •) an integral neodomain? This I have been unable to

answer. If the answer is no, one may easily describe "prime" kernels

K containing N such that (A/K, +, •) is an integral neodomain;

but the problem of universality now arises: Is the set of such kernels

closed under intersection?

5. Finite integral neodomains. Every finite integral neodomain is,

of course, a (commutative) neofield. Paige [2] shows that, for every

w^2 and every multiplicative abelian group G of order n — 1, there

exists a neofield (R, +, •) of order w with G as the multiplicative

group of nonzero elements. By Bruck [5], either (R, +, •) is a field

or (R, +) is a (not associative) simple loop. If w —1 is odd or if the

2-Sylow subgroup of G is noncyclic, Paige's work implies that the

subneofield of (R, +, •) generated by the identity is the field of order

two. For a nontrivial example of a finite neofield generated by its

identity it is therefore simplest to take w = 3 mod 4; and since the

loop of order three is a cyclic group, the smallest nontrivial example

has order 7. The addition is given by:

+ 0123456

0 0    12    3    4   5    6

1 16   3    5   0   2   4

2 2   5    14   6   0   3

3 3   4   6   2   5    10

4 4   0   5    13   6   2

5 5   3   0   6   2   4    1

6 6    2    4   0    13    5
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Since (1 + 1) + 1 =2, 1 + (1 + 1) =4, addition is not associative. It may

be verified that the permutation (123456) is an automorphism; the

multiplication table is then obvious.

It seems likely that similar examples exist for every n=4k+3

where k is a positive integer. In the infinite case, the methods of

Paige [2] and Bateman [6] again give neofields of characteristic two,

so no example is known of a nontrivial infinite integral neodomain

generated by the identity element.

By modifying Paige's work one can readily show how to construct

an associative division right neoring in terms of its multiplicative

group—the case 1 + 1=0 is tied to the theory of complete mappings

of groups—but this I will omit.

One final remark. If one attempts to characterize a universal inte-

gral neodomain, it is an easy step to the consideration of the notion

of a radical of a neoring. It is interesting to note that if a, b are nil-

potent elements of a commutative associative neoring, a+b is nil-

potent but (I suspect, at least) the solutions x, y of x+a = b, a+y = b

may not be.

Added September 30,1954. Recent work of Artzy [7] can be adapted

immediately to the construction of infinitely many nonisomorphic

"minimal" neofields of countable order, thus solving one of our prob-

lems. Moreover the additive loop is simple in each case. We use the

proof of Artzy's Theorem 2. If N is the set of all nonzero rational

integers, let k—*f(k) be a single-valued transformation of N into N

such that

(5.1) /(-/(*)) = k+l-f(k)

for all k in N. If T is a generator of the (multiplicatively written)

infinite cyclic group, let (R, +) be the system consisting of a zero,

0, and the powers of T, with 0+0=0, 0 + r* = r*+0 = F*, Tk + Tk+1

= 0 for all integers k and with

(5.2) T>' + F*+1 = r««H for k 9* j.

As Artzy shows, (R, +) is a loop; moreover there are infinitely many

functions / and distinct ones define nonisomorphic loops. Since

Tk+Tk+1 =0 for every k, Tk generates (R, +) for every k; in particu-

lar, (R, +) is simple. And, finally, if 0-0=0-F* = r*0=0 and
T'-Tk = T'+k, (R, +, •) is a neofield.
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THE SCHWARZIAN DERIVATIVE AND CONVEX
FUNCTIONS

RICHARD F. GABRIEL

1. Introduction. In a comparatively recent paper [2], Nehari has

shown that if

(1.1) f(z) = 1/z + aiz + a2z2 + • • • for 0 < | z | < 1

and

(1.2) | {/(*);*} | gy for|Z|<l,

where {/(z), z} is the Schwarzian derivative of f(z) with respect to z,

then/(z) is univalent in the unit circle. The methods of Nehari can be

modified to apply to functions of the form (1.1) to be shown univalent

and convex in the unit circle. The principal result obtained in this

paper is the following:

Theorem 1. Iff(z) is of the form (1.1), regular for 0<|z| <1, and if

(1.3) | {/(z), z} | g 2c0 /*r|*|<l,

where c0 is the smallest positive root of the equation

(1.4) 2xl>2 - tan x1'2 = 0,

then f(z) is univalent in 0 < | z\ < 1 and maps the interior of each circle

\z\ =r<l onto the exterior of a convex region. The constant Co is the

largest possible one.
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