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1. Introduction. Starting with the work of Goursat [7] in 1900

there has been considerable interest in the following question: given

a continuous complex function / on an open set 0, how weak can one

make the further conditions imposed to guarantee analyticity of /?

In particular, conditions have been sought which restrict the behavior

of / on as small as possible a subset of £2. Theorems of this sort are

frequently associated with the names of Looman and Menchoff,

who were the first to show [16, p. 199] that for/ sufficiently well be-

haved the Cauchy-Riemann equations need only be required to hold

almost everywhere.

In the sequel it will be convenient for purposes of comparison to

have at our disposal two theorems of Besicovitch [3], and we state

them here with the same numbering.

Theorem 1. Let f be a bounded complex function on fl — E, where Q

is an open set and E a subset having zero length.2 If f admits a finite

derivative on fl—is, then f can be extended so as to be analytic on Q.z

Theorem 2. Let f be a continuous complex function on ah open set

fi, and let E be the union of countably many subsets of finite length. If

f has a finite derivative on Q — E, then f is analytic on 0.

With reference to a point raised by Saks [16, p. 201], Maker has

applied Theorem 2 to prove [8, p. 267] the following generalization

of the Looman-Menchoff theorem.

Theorem 3. Let f=u+iv be a continuous complex function on an

open set fi, and let E be the union of countably many sets of finite length

closed in 0. If u and v have finite partial Dini derivates on 0, — E and

satisfy the Cauchy-Riemann equations ux = vv, uv= — vx almost every-

where, then f is analytic on S2.
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• Length =■ Carathdodory linear measure.

' Actually, the statement of the theorem according to Besicovitch presumes/ to

be defined on Q, but the present version follows at once by extending/ as in the proof

of Theorem 4.
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THE LOOMAN-MENCHOFF THEOREM 95

Our principal aim in the present paper is to extend the Looman-

Menchoff theorem to subharmonic and 5-subharmonic functions, and

to employ the Looman-Menchoff techniques in determining condi-

tions sufficient for absolute continuity of the mass distributions.

Throughout the paper we shall consider only functions defined on an

arbitrary open set Q in the plane, but it is clear that the theorems in-

volving 5-subharmonic functions extend easily to Euclidean spaces

of arbitrary dimension.

To obtain a characterization of continuous subharmonic functions

(Theorem 6), we employ the operators of Blaschke and Privaloff,

and this suggests the possibility of a corresponding condition for

analyticity. Exploitation of this approach by means of techniques

due to Meier [9] results in the fact that the Cauchy-Riemann equa-

tions in Theorem 3 can be replaced by the expression

11 r
liminf — /(f)#   =0,

i->o     r \J c,m

where Cr(z) denotes the positively oriented boundary of the rircle of

radius r about z. A similar condition in terms of a square of side r

has been given by Wolff [16, p. 196], but there does not seem to be

any intrinsic connection between the methods.4

In the majority of the applications of the Looman-Menchoff tech-

niques continuity, plays an essential role in establishing closedness of

certain sets (the sets Fn in our notation). Nevertheless, it is possible

to relinquish continuity under favorable conditions, such as those

arising in Theorem 7. This is the case also in the following theorem,

which bears the same relationship to Theorem 1 as Maker's theorem

does to Theorem 2.

Theorem 4. Let f—u+iv be a bounded complex function on U — E,

where fl is an open set and E is the union of countably many sets of

zero length closed in fi. If

lim sup  -   < + 00 for z on SI — E
t->i f — z

and the Cauchy-Riemann equations ux = vy, uv= — vx hold almost every-

where on Q—E, then f can be extended so as to be analytic on ft.

A proof of Theorem 4 will be given later in §4.

In the 5-subharmonic case the exceptional set E is taken as an

* In dealing with rectangles in situations of this sort, essential use is made of their

subdivision properties.
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arbitrary Borel F, set of capacity zero (see [6, Chap. VII]). Since

the irregular boundary points of any open set comprise an F, of

capacity zero, it seems likely that the theorems (or at least the

methods) indicated here may have applications related to the Dirich-

let problem. In fact, we are led to conjecture that the Looman-

Menchoff techniques should be of value in a wide class of problems

involving the approximation of linear operators by difference oper-

ators.6

2. Subharmonic function theorems of Looman-Menchoff type.

That harmonic functions admit a Looman-Menchoff characteriza-

tion has been shown by Beckenbach [2], under the assumption that

the exceptional set E is countable.

We observe that modifications of the sort made by Maker [8, p.

266] in the proof of the Looman-Menchoff theorem can also be made

in the proof of the theorem of Beckenbach, but it is just as easy to

establish a more inclusive condition sufficient for subharmonicity.

Theorem 5. Let u be a real-valued function having continuous first

partial derivatives on an open set 0, and let E be a Borel F, set of ca-

pacity zero. If the first partial Dini derivates of ux and uy are finite

on il — E and Au^Uxx+Uyy^O holds almost everywhere, then u is sub-

harmonic on Q.

Like all of the currently known proofs of the Looman-Menchoff

theorem and its generalizations, our proof of Theorem 5 leans

heavily on the Baire category theorem.

Let F be the set of all points z(£fi) such that u is not subharmonic

on any neighborhood of z. Clearly F is closed in 12 and u is subhar-

monic on ft — F. Suppose that F?*0.
For positive integral n let us define Fn as the set of all points z(£fl)

such that \h\ <l/n (h being real) implies

I «*(z + h) — ux{z) | + | ux{z + ih) - ux{z) \

+   |   Uy(Z   +    K)    —    Uy(z)   |    +   |   Uy{Z   +    IK)    ~    Uy(z)   |     ̂     M   |    k  | .

The sets Fn are closed in ft and in their aggregate cover Sl—E. Further,

we have E = U "_!■£„, where each En is a set of capacity zero closed in

Q. Since the countable family of relatively closed sets Fn and £„

covers ft, and a fortiori F, the Baire category theorem ensures the

existence of a neighborhood co such that FHu is nonempty and lies

in one of the covering sets.

The possibility of FPiu being contained in some En is, however,

6 In particular, these techniques should find application in the theory of partial

differential equations.
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ruled out by a theorem of Brelot [4, p. 31 ] which asserts that a

function bounded above on a region and subharmonic outside of a

relatively closed subset of capacity zero admits a unique subharmonic

extension on the region6 (by continuity this extension must in our

case coincide with «). There is thus an index N for which FC\o}QFN.

A proof of the following lemma is given in the monograph of

Menchoff [10, p. 10].7 Let w be a continuous real-valued function on

a square Q= [a, a+s]X [|3, /J+s], and let F{^0) be a closed subset

of Q and Ma constant such that (x, y)£Fand (x+h, y), (x, y+k)(E.Q

imply

\w(x + h, y) — w{x, y)\ g M\h\,   \w(x, y + k) — w(x, y)\ ^ M\k\.

If R = [xi, X2]X [yi, ^2] is the smallest (possibly degenerate) rectangle

having edges parallel to the coordinate axes and containing F, then

/[w(x, y2) — w(x, y{)]dx —  I   wvda   g 5Ma(R — F),
«, J F

/\w(xi, y) — w(xu y)]dy —  I   wxda   ^ 5Ma(R — F),

where a denotes Lebesgue plane measure.8

Beckenbach [2] has shown how an argument paralleling that used

by Menchoff in the analytic case leads at once to

/{du/dv)ds =  f       Auda ^ 0

(v denoting the outward normal and dQ the positively oriented

boundary of Q) for every square QO». It is then obvious from the

proof of Lemma 3 of Beckenbach [2 ] that this makes u subharmonic

on u. The resulting contradiction forces F = 0, completing the proof.

Replacing the inequality in Theorem 5 by equality plainly results

in harmonicity of u and shows that the exceptional set in the theorem

of Beckenbach can be allowed to be an F, of capacity zero.

We recall [l, p. 335] that for u an integrable function the Blaschke

difference operator A? is defined by

Ar «(z) = (4/r ) [firu(z) - «(z)],

* Although stated in terms of a closed set by Brelot, it is evident that the set need

only be relatively closed.

' Note that the corresponding lemma in Saks [16, p. 198] and in Beckenbach [2]

is unnecessarily restrictive.

' The Lipschitz conditions on w imply that wx and wy exist almost everywhere and

are summable on F [16, Chap. V].
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where firu(z) is the integral mean of u over the circumference of the

circle of radius r about z. Denoting by A%(z) and Abm(z), respec-

tively, the limit superior and limit inferior of Afu(z) as r—»0, we ob-

tain the upper and lower Blaschke operators, AB and AB. Use of the

areal mean aru(z) in place of the circumferential mean fxru(z), and

the factor 8/r2 in place of 4/r2, serves to define the corresponding

Privaloff operators Af, Ap, and Ap analogously.

As we proceed to show, a Looman-Menchoff criterion for continu-

ous functions to be subharmonic can be given in terms of the opera-

tors of Blaschke and Privaloff.9

Theorem 6. Let u be a continuous real-valued function on an open

set Q. Then for u to be subharmonic on ft it is necessary and sufficient

that ABu > — oo hold except perhaps on a Borel F„ set of capacity zero

and that ABu 2:0 hold almost everywhere.

Proof. The necessity is obvious. For the sufficiency we take F as

the set of all points z(£ft) such that u is not subharmonic on any

neighborhood of z, and define Fn as the set of all points z(£ft) such

that 0 <r < 1 jn implies Af u(z) >t — n. These sets are closed in ft by virtue

of the continuity of Afu, so that if F is not empty, we conclude

exactly as in the proof of Theorem 5 that Fx^)Fr\u>?^0 for some

index N and some neighborhood co.

Now, from ABw2t — N on co, it follows10 that the function defined by

u(x< y)+Nx2/2 is subharmonic on co, and there results AfwS: —N on

the neighborhood obtained by shrinking w radially through a distance

r. It is evident also that the areal mean operator a„ commutes with

the Blaschke difference operator to yield Afa„u = ctpAfu. Thus, taking

advantage of the fact that the functions Afu are bounded below, we

can apply Fatou's lemma to infer

ABa„u 2t a„ABu St 0.

This implies [13, p. 14] that the continuous functions apu are sub-

harmonic. Since they converge uniformly to u on compact subsets,

u must be subharmonic on co, contradicting our assumption of Ft±0.

Observe that the hypothesis of continuity on u cannot be supplanted

by even such a plausible condition as lim supr.r u{%)=u(z) for all

z£ft. This follows from the fact that there exist nonempty perfect

sets of capacity zero [ll, p. 153] (the function u defined as 1 on such

a set and 0 elsewhere is not subharmonic).

' We carry out the details only for the case of the Blaschke operator, but the

Privaloff operator behaves in the same way.

10 See, for example, the proof of Theorem 19 of [l ].
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It is of interest to compare Theorem 6 with the following theorem

of Privaloff [12]: a necessary and sufficient condition for a continu-

ous real-valued function u to be subharmonic on an open set Q is that

Apu > — oo hold except possibly on a closed set of capacity zero and

Apm=^0 hold almost everywhere. To allow the exceptional set to be

an F„ we have thus had to pay only the rather reasonable price of

replacing the upper by the lower operator.

An immediate consequence of Theorem 6 is

Corollary 6.1. A real-valued function h on an open set £2 is har-

monic if and only if h is continuous, lim suprJ.o | Af/t| is finite except

perhaps on a Borel F, set of capacity zero, and ABh = 0 almost everywhere.

For 5-subharmonic generalizations of Theorems 5 and 6 we have

recourse to an elementary argument of the kind used in proving

Theorem 19 of [l ]. It follows that if, instead of requiring the operators

appearing in these theorems to be non-negative almost everywhere,

we require them to be locally essentially bounded below, then the

function u is 5-subharmonic on £2.

3. Absolute continuity of the mass distributions. Aside from yield-

ing conditions for subharmonicity and 5-subharmonicity, the Loo-

man-Menchoff techniques can be applied to the problem of determin-

ing when the mass distribution for a subharmonic or 5-subharmonic

function is absolutely continuous (that is, is given as the Lebesgue

integral of a summable density function).

In developing some sufficient conditions of this sort, we shall have

use for two preliminary lemmas. The first of these lemmas is a special

case of Theorem I of Rudin [15], but we present a brief independent

proof based on Rosenbloom's characterization of the mass distribu-

tion for a potential [14].11 It will be convenient to have on hand the

following notational conventions: (1) for N any real number, X# will

signify the function defined on the plane by

\N(x, y) = Nx*/2;

(2) for Q an open set and r a positive number, Qr will signify the

set of all points of Q whose distance from the boundary exceeds r.

Lemma 1. Let wbea real-valued function continuous on an open set Q.

If ABw is bounded above and ABw is bounded below, then w is 5-sub-

harmonic and its mass distribution is absolutely continuous.

Proof. Choosing N such that ABw^N and ABw^—N, we see

11 See also Theorem 13 of [l ].
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that Xjv — w and Xtf+w are subharmonic. There results the bounded-

ness condition

- N ^ A*w ^ N

on 12r. Since w is 5-subharmonic, a lemma of Rudin [lS, p. 280 ] assures

us that ABw exists almost everywhere and is summable on compact

subsets of 12. Hence, if m is the mass distribution for w, the theorem of

Rosenbloom mentioned above yields

i r b i r b
— m(e) = lim — I  Ar wda = — I  A wda

r-K) 2tt J t 2lT J  ,

for all bounded Borel sets e with closure in 12 and having no mass on

their boundaries. The lemma is thus established.

The second lemma is readily reduced to the preceding one.

Lemma 2. Let 12 be an open set, F a subset closed in 12, and U the

potential of a negative mass distribution m on F. If for some constant

N and all sufficiently small r(>0) the inequality

ABU ^ N

holds on Fr\Slr, then U is continuous on 12 and m is absolutely con-

tinuous.

Proof. Taking z and z0 as points of F, it being assumed further that

z0 is a limit point, we have for small r

I   U(z)   -   U(zo) |   ̂  |   U(Z)   - IXrU(Z) l+\ HrU(z)   - prU(zo) \

+ | firU(Za)   -   U(Z0) |

^ | nrU{z) - nrU(za) | + Nr*/2-> Nryi
Z—+Zo

by virtue of the continuity of nrU. Hence, U is continuous as a func-

tion on F, and it follows from the work of Evans [5, p. 238] that U

must be continuous on 12. An application of Lemma 1 completes the

proof.

With this information at our disposal we are in a position to prove

a theorem related to Theorem II of Rudin [IS]. The distinction

here is similar to that between Theorem 6 and the theorem of Privaloff

noted in connection with it: we replace the lower by the upper

operator but allow the exceptional set to be an F„. However, in the

present case we receive the unexpected bonus of not having to re-

quire continuity.
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Theorem 7. Let ft be an open set and u a subharmonic function on ft

having the property that the set {z: u(z) = — «>} supports none of the

mass of u. If ABu < + °°, except perhaps on a Borel F„ set of capacity

zero, then the mass distribution for u is absolutely continuous and

there exists a subset E of capacity zero closed in ft such that ABu < + co

on ft — E.

Proof. We take F as the set of all points z(£ft) such that on no

neighborhood v of z does u satisfy the following conditions: (i) the

mass distribution m for u is absolutely continuous on v, and (ii) for

some subset A, of capacity zero closed in v we have ABu < + » on

v—A,. It is obvious that F is closed in ft. Moreover, u possesses

properties (i) and (ii) on the open set v = ft — F, as is easily seen by

paracompactness considerations. Let us suppose that F is non-

empty.

For n = l, 2, • • -we denote by Fn the set of all points z(£ft) such

that 0 <r < 1/n implies Afw(z) ^n. Invoking the continuity of \iru and

the fact that lim sup^*,, «(z) = u(z0), we find that

Ar m(zo)   = lim inf Ar u(z)   ^   lim inf   Ar «(z) ^ n

for 0<r<l/n and z0 a limit point of Fn. The sets Fn are thus closed

in ft.

It is evident that ft is covered by the sets Fn and En (n = 1, 2, • • •),

the latter being suitably chosen sets of capacity zero closed in ft.

Hence, there exists a neighborhood co(Cft) such that Ff^co is non-

empty and lies in one of the covering sets. This cannot occur, however,

for any En, in view of our hypothesis prohibiting sets of capacity

zero from supporting any of the mass of u. It follows that F(~\cc<ZFN

for some index N, so that

Af w(z) S N

for z on Ff^co and 0<r<l/N.

We observe that this inequality remains valid for the potential U

obtained by restricting m to FP\co, inasmuch as u is the sum of U

and a subharmonic function. Lemma 2 now applies to U, establishing

absolute continuity of m on FOco, and the resulting contradiction

shows that F is empty.

Combining this result with Theorem 6 gives rise to a direct exten-

sion to the S-subharmonic case.

Corollary 7.1. Let w be a real-valued function continuous on an

open set ft. If ABw and ABw are finite, except perhaps on a Borel F„ set
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of capacity zero, and if ABw is locally essentially bounded below, then w

can be represented as the difference of two continuous subharmonic func-

tions having absolutely continuous mass distributions.

The proof is based on consideration of the function w—\c on a

neighborhood over which c is an essential lower bound for ABw.

Theorem 6 shows w—\c to be subharmonic, and Theorem 7 shows its

mass distribution to be absolutely continuous.

We then make use of the following generalization of Poisson's equa-

tion, given by Rudin [lS, 3.6]: if the mass distribution for a 6-sub-

harmonic function w is absolutely continuous and has density p, then

ABw = — 2irp almost everywhere. Since the potential of a mass dis-

tribution defined by a bounded density function is continuous, it is

apparent by splitting ABw/2w into its positive and negative parts

that the function w in Corollary 7.1 can be represented as the dif-

ference of two continuous subharmonic functions having absolutely

continuous mass distributions.

4. The analytic case. Proof of Theorern 4. Let us first of all verify

the assertion made in §1 that Theorem 3 remains in force when the

Cauchy-Riemann equations are replaced by the equation

liminf—   I       /(f) <#   = 0.
r-o     r2\J crw

We take F as the set of all points z(£12) such that/ is not analytic

on any neighborhood of z, and for positive integral n define Fn as

the set of all points z(G12) such that \h\ <l/n (h real) implies

\f(z+h)-f(z)\+\f(z+ih) -f(z)\ £n\h\.

Under the assumption that F is nonempty the application of Besico-

vitch's theorem employed by Maker [8, p. 267] serves to establish

the existence of a neighborhood u> and an index N such that FnZ)F

r\o)9±0.
From a result of Meier [9, p. 186] it is evident that w can be chosen

in such a way that/ satisfies a Lipschitz condition

I/(?)-/(*)! £M\t-z\

for f, z on a. Also, the continuity of u implies that the areal mean

function aru is continuously differentiate and in fact [13, p. 11 ] has

the partial derivatives

daru(z)       1   r2r
-— = — I      u(z + re") cos Odd,

dx icrJa
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daTu(z)        1    C iT
-— = — I      «(z + reie) sin Odd.

dy irrJo

Since the Lipschitz condition guarantees the existence almost every-

where of ux, uv [16, Chap. V] and justifies differentiating under the

integral sign, we have access to the further identities

(<*,«)* = «r(«.)    and    (a,w)„ = a,(uy).

Similar expressions hold for v, and there results

—- I       /(f)<*f = i[arux(z) — aTVy(z)] — [«r«v(z) + arvx(z)].
■xr2Jcru)

In the limit as r—>0 this yields ux = vv and uy = — vx almost everywhere

on co. Hence, from Theorem 3 (or the observation that the analytic

functions aru-\-iarv converge uniformly on compact subsets to u-\-iv)

it is apparent that/ is analytic on co, so that F=0.

This completes the proof of our assertion, and we turn to the

demonstration of Theorem 4.

Here the function/ is given only on ft — E, but we immediately ex-

tend it to all of ft in the following way. With each point z of E we

associate arbitrarily a sequence (f*(z)} of points of ft—£ such that

lim*,M f*(z) =z and {/[f*(z)]} is convergent; this is clearly possible

since/ is bounded. Then/(z) is specified as the limit of {/[f*(z)]}.

Having thus defined / on ft, we let F be the set (closed in ft)

consisting of all points z(£ft) for which / is not analytic on any

neighborhood of z. As in the preceding proofs we assume that F is

not empty and from this trace a contradiction.

For positive integral n, Fn will denote the set of all points z(£ft)

such that |f — z| <l/« implies

(*) I/(»-/(*) | jS»|f-f|.

The following direct argument shows that each F„ is closed in ft.

Take z0 as a limit point of Fn, f as a point of ft such that |f — z0|

<l/«, € as the positive number 1/w— |f —z0|, and {zk\ as any

sequence of points of F„ converging to z0 and satisfying \zk — z0\ <e.

Since |f — zk\ <l/w and \zk — z0\ <l/n, we find

| /(f) - /(*,) | g | /(f) - f(Zk) | + | /(z„) - f{zk) |

^ w( | f - z* I + I zo - Zi | ) —-> n | f — zo |.
R—* oo

Moreover, the method used in extending / ensures that the sets

F„ cover ft—E. That is, the inequality (*) holds at each point z of
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12 — E for some corresponding n and all f on 12 — E which satisfy

|f — z\ <l/w; by passing to the limit through appropriate points of

12 — E, it therefore holds for all f on 12 satisfying | f — z| <l/«.
Applying Theorem 1 in conjunction with the Baire category theo-

rem, we obtain a neighborhood w centered at some point a of F and

an index N such that FN~^)Ff^u. This forces/ (analytic on«-f) to

be continuous on w. Shrinking w if necessary, we shall suppose that

its radius is less than l/N. Once again we refer to the work of Meier

[9, p. 186] for the fact (easily established by means of the Cauchy

integral formula) that the Lipschitz condition

l/(r)-/(z)l £2tf|r-*|

then holds for all f, 0 on the neighborhood a' about a having radius

half that of w.
With the Lipschitz condition at our disposal it becomes profitable

to introduce the areal mean functions aru and arv. That is, we are

assured that the integrand in the identity

artt(z + h) — a,u(z)      OrV(z + ih) — arv(z)

h h

1    rr   r 2t Tm(z + h + pe") - «(z + pe")

wr2Jo   J a    L h

v(z + ih + peie) - v(z + pei6)~\
-   pdddp

is bounded for h(^0) real and numerically small. Since, as h—>0,

the integrand tends to 0 almost everywhere (through values for which

the argument belongs to 12 — E, and therefore, by continuity, through

all values), there results

daTu/dx = darv/dy.

Similarly,

daru/dy =  — darv/dx.

The functions fr = ctru-\-iarv, which have just been shown to be

analytic, converge uniformly on compact subsets of &>' to/, so that/

must be analytic on «'. This contradiction proves that/, as extended,

is analytic on 12.

It should be remarked that the proof given here can be somewhat

shortened by invoking the classical Looman-Menchoff theorem for/

on co. The development actually adopted is, however, substantially

more elementary.
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S. Added in proof. The author is indebted to Professor J. Ridder

for calling attention to the theorem enunciated in footnote 31 of his

paper Harmonische, subharmonische und analytische Funktionen [An-

nali Scuola Normale Superiore, Pisa (2) vol. 9 (1940) pp. 277-287].

This theorem implies that the exceptional set E in Theorem 4 can

actually be taken as the union of countably many sets of zero length,

not necessarily closed in ft. However, the derivation outlined by

Ridder is based on fairly deep results of Saks and Zygmund, Haslam

Jones, and Morera-Rademacher, whereas Theorem 4 follows in an

elementary way from Besicovitch's Theorem 1. On the other hand,

it is inherent in the nature of the Looman-Menchoff argument that

the exceptional set must be an F„ for this argument to be applicable.
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