
ON FLUCTUATIONS OF SUMS OF RANDOM VARIABLES1

LOUIS J. COTE

Introduction. These results are generalizations of a theorem of

Chung [l ] on the limiting distribution of the number of crossings of a

value, c, by the successive partial sums of a sequence of inde-

pendent random variables, and of theorems by Chung and Erdos

[3 ] on the lower limits of such sums. Two of these theorems concern

the case of independent, equidistributed random variables whose dis-

tributions have an absolutely continuous component (Case A). The

others are for binomial variates (Case B). We extend the results of

Case A to sums of independent random variables whose distributions

need not be the same, and those of Case B to sums of independent

and equidistributed random variables of the lattice type.

Let {Xn} be a sequence of independent random variables whose

c.d.f.'s, {Fn(x)}, need not be the same. We use the usual notations:

* 1      I* 22

EXi = ctki,        £ I Xi I   = Ski,        E(Xi — au)   = <r<,
n n

/  . J£ i  = *Jn» / . 0"»  =   Sn,

.=1 .-1

P{Sn  g   X}   =  Fn(x)   = Pl*P2*    •   •   •    *Fn(x).

The crossings of a line, Case A. For a sequence, {cn}, we say that

Sn crosses {cn} from above at ft if Sk> —ck, Sk+i< —ck. The number

of such crossings for 1 gftgw is a random variable P„. We have the

following theorem on its limiting distribution.

Theorem 1. Let {Xn} be a sequence of random variables whose means

are zero and which satisfy the conditions:

(1) For the resolution Fn(x)=gnGn(x)+(l—gn)Gn(x), where Gn(x)

is absolutely continuous and G„ (x) has no absolutely continuous com-

ponent,

dGn(x)
(a) -is of bounded total variation, vn, in (— 00, 00),

dx

(b) lim-}2  .   ,* . = °° ;
!»-•> log n *_i  1 + trj.
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\      k+n

(2) lim —   22 0n = Br uniformly in k (r = 1, 2),

\      k+n

(3) —■   22 0** < M uniformly in k,
ra  i=k+1

and let {c„} be a sequence of real numbers satisfying

Ck+n  T   Ck

(4) hm-= 0 uniformly in k.
b-.»      ra1'*

Then we have

(1) lZP{T» ^ x ^ w1'2} = (7)'/"er'^dt.

When the variables {Xn} are equidistributed with a c.d.f. having

an absolutely continuous component whose derivative is of bounded

total variation in (— °°, «>), the conditions (1), • • • , (3) are auto-

matically fulfilled. Then, taking c„ = c, we have the case treated by

Chung's Theorem 1 [l]. Our generalization is two-fold; the variables

need not be equidistributed and we are not confined to crossings of a

horizontal line. Condition (4) admits the line c„ = ra1/2_e (though not

cn = o(n112)); on the other hand it follows from the law of the iterated

logarithm that the conclusion (1) is no longer valid for c„ = ra1/2+e.

Chung's theorem assumes only the existence of fi3 and that Fn(x)

is not of lattice type. This additional strength is a consequence of

the availability of a stronger expansion theorem in the case of equidis-

tributed random variables (Esseen [6]) than in the case of non-

equidistributed random variables (Cramer [5]). Since the proof fol-

lows that of [l ] we present only an outline.

First we show

E(Tn) = 22,f   \Fk(- ch - x) - Fk(- ck)]dFk+i(x)
,   , k-l J -oo

(2) B

= ra1'2-^ + o(ra1'2)
(2irB2yi2

using Cramer's theorem to estimate Fk. We proceed to calculate

E(Tn) which can be expressed as a sum of multiple integrals as fol-

lows: by the multinomial theorem

(3) e(tZ) = Z Z'  ,    •   , z2"e(yZI ■ - - f:/),
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where

t
22' is a sum over all mt > 0 such that 22 "*• = mi
mi »»1

22" is a sum over ah w» such that 0 < »i < ■ • ■ < w (g »,

and

jl if 5„ crosses {cn} from above at ft,

(0 otherwise.

Let S„k —S„kl+i = Rnk have the c.d.f. Gnic(x). We can express the

last sum on the right of (3) as

l       /» 0—    n —Ck—Vk

(4) E"II dG„h(xk)dFnk+i(yk)
n{       k—lJ -oo   J -C*

where JJ denotes iterated integration, and

t-i

c* = cnt + 22 (*«■ + y<)-
i=l

The integral in (4) is a generalization of the one in (2); it can be

evaluted up to. terms of o(n112) using induction on /. It is for this

evaluation that the uniformity conditions of assumptions (1) to (4)

are needed.

The results of these calculations show that the moments of

Tn/(nll2Bi/2Bl2/2) approach those of the semi-normal distribution.

With Polya's continuity theorem of the moment problem [7], this

gives the final result.

The lower limit of sums of random variables, Case A.

Theorem 2. Let {Xn} be a sequence of independent random variables

with zero means which satisfy the condition (1) of Theorem 1 and

(i) inf B2n > 0,
n

(ii) sup ftn <  °° ,
n

2 2

(iii) lim inf-^ 1 uniformly in n.

Then given a monotone nonincreasing sequence of positive numbers {an},
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(5) p/liminfJ^i- = ol = i1'
I n—»       an ) (.0,

according as

^,   an  (converges,

n   ra1'* wuerges.

For the sake of brevity we have stated the conditions in a form

somewhat stronger than necessary, for instance the divergence part

requires only sup„ fitn < °°. When the Xn are equidistributed with a

c.d.f. having an absolutely continuous component, conditions (i),

(ii), and (iii) follow from the existence of the fifth moment and the

result is the same as Theorem 3 of Chung and Erdos [3],

Again since the proof is similar in method to that of [3 ] we present

an outline. Using Cramer's expansion theorem we first prove the fol-

lowing lemma.

Lemma. Let {X„} be a sequence of independent random variables

with zero means, satisfying conditions (1) of Theorem 1, (i) of Theorem

2, and (ii'), sup„ fipn< °° (p an integer ^3). Let a(n, k)<b(n, k) be

sequences of numbers (£ = 1, 2, • • • ; n = k, k + 1, ■ ■ ■) satisfying

lim   a(n, k)  =    lim   b(n, k) = x    uniformly in k;
n—t—*» n—t—► <»

then

Pla(n, k) <,       "        *     :S b(n, k)\  = <b(x)[b(n, k) - a(n, k)]

+ o[b(n, k) - a(n, *)] + 0[(n - k)~^~2^2]

where d>(x) is the normal density function, and the order terms denote

limits as ra — k—> oo which are uniform in k.

The convergence part of Theorem 2 follows directly from the

lemma with p = 5 without using the uniformity of the order terms in

(7). The divergence part is considerably more delicate and is proved

by an elaboration of the methods of [3]; it requires condition (iii)

and the uniformity of the lemma, but only p = 4 in (ii').*

The lower limit of sums of random variables, Case B. This section

* Dr. Chung asked me to remark that in the statement of Lemma 6 of [3], z„

= 0(n1/!) should be replaced by an assumption such as (4) of Theorem 1 above. It

should be remarked that (4) is not implied by cn =0(g(n)) if g(n)—>» however slowly.

The proof in [3] requires only z„=0(l) which implies (4).
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is devoted to proving some lower limit theorems for sums of inde-

pendent, equidistributed lattice type random variables. The corollary

to Theorem 3b and Theorem 5 generalize Theorems 1 and 2 of [3]

which are stated for binomial random variables.

Theorem 3. Let {Xn} be a sequence of independent, equidistributed

random variables whose possible values are integers and EXn = x. Let

{an} be a nonincreasing, positive sequence and define {nt} to be the

(increasing) sequence of integers for which \l(nx)—nx\ <a„e (e>0 and

I(nx) =the nearest integer to nx). Then

(a) //, for some 5 >0, £ | Xn|2+8 < °°, and 22i «r1/2 diverges,

I \ Sn — nx\        }
(8) P<liminfJ- = 0> = 1.

I   n->» a„ J

(b) Assuming only the first moment to be finite, when 22i nT1/2

converges,

( | Sn - nx |        ")
(9) P<liminf-- = 0V  = 0.

I  n-»» a„ J

The techniques of the proof require that the sums Sn have the

same lattice for each w. This can be accomplished for general lattice

type variables by making a linear transformation to an integral

lattice. Having.done so, however, we can no longer assume the mean

to be zero but we can transform so that 0gx<l. We consider the

event

( \Sn — nx\        ) . . . .
<lim inf-= 0>   = lim { \Sn — nx\ < a„« i.o.)
1. n-»» an ) «-»o

oo

= lim  lim    U   { | Sn — nx \ < ane}.
«-°  »-►<•   n=h

Let £n= {| S„ — nx\ <ane}. Sn is always an integer whereas nx may

not be. We may take e so that o„e<l for all w, then for those values

of w for which nx is not within a„e of an integer, the event £„ is im-

possible. Therefore for the sequence {w,} defined in the theorem,

f0 for nE {«.},

(d = {Sni = I(n{x)} for «< E {«.}•

Obviously

{£ni.o.} = {Gilo.}
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and we need consider only the G,-.

We shall use Lemmas 1 and 2 from [3] which link {an} with {ra,}.

We state them somewhat differently but omit the proofs which are

unchanged.

Lemma 1. If an i 0, then for integers i, k>0,

ra*+2i ̂  ra* + w».

Lemma 2. // Z» ajn112 diverges, then 22* l/wf/2 diverges.

For any integers a, b let F*= {Snk = l[(nk+a)x]+b}. We express

these events as a disjoint union

Fi = ii Tf, n (pfc n n f;Y| (j s *).

Thus

£W = £ £p\Fin (f* n Vfi)]
i-H i=h k-h        L \ j=h / -1

n / *-l \     " / k~1 \

= Zf(f* n n f/)Ef FilF*^ n f/).
*-A \ J=fc /   i_* \ ;_>s /

Now

/tts    p(F,|F*n -n F/) = p(f,-|f*)

= P{5„,_nt = /[(«; + a)x] — /[(ra* + a)x]}.

Lemma 1, p. 44 of Esseen [6] may be used to extend Theorem 5,

p. 63 of that paper to the case where E\ X\2+8 < oo, giving for a dis-

continuity point, £, of Sn

(12) P\Sn = d  =- <*>(--— )+0(-V
; l '       on1'2    \ o-n1'2 J \»<m"V

Now l[(ni+a)x]—l[(nk+a)x] = l[(ni-nk)x]+e where 0 = 0 or

+ 1. By Lemma 2, «,- — ra*^rap, where £ = [(* —fe)/2]. From (12) and

(11) we have

F(F>p2
hm   —-i- = 1.

I-*-.- P(Fi|F,)(rai-ra*)1'2

Thus for any ij>0we can find N(t]) such that for i — k^N(rj)

P(Fi | Ft) £ (1 + 57)P(FP)      (p = [(» - ft)/2]).
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From (10) we have

tp(Fi) ^22p(F«r\ n'p/)
i-ft k-h        \ i=h /

[N-l [n/2]                       -1

22 P(P<\Fk) +2(1+ v) 22    P(Fi)\-
i-k i=[N/i]                   J

Whence

E P(F)

±p(f„ n n fi) = p(h) * - —-

[JV/2]

Since by (12), 22iP(Pi) diverges, we can find a A(f) for0<f<l/2

such that ft^A(f) implies

p(\J f)\ = p(\J   {Sn, = I[(nj+a)x + b}\ ^ f.

This statement implies the statement: for f >0, there is a A(f) such

that for ft>0and ft^A(f),

(13) p( U^ {5,- = I[(j + a)*] + 6}) ^ f1'2-

Now we choose a sequence of integers, ki = h<k2<k3< • ■ ■ , as

follows: Suppose ftr is already chosen. Let

(14) Ai =     U     {St = p(j) = 1(3*)) (i = 1, 2, • • • , r + 1)

where ftr+i is to be chosen. We have

p^r+1| n ai)

=-f P(Ar+1 | skr-i = o)dP(ff)

p(c\ai)   ^k-l)

^ Min P(Ar+i | Skr-i = o-)p{\ Skr.i | g cr | fi  All .
I»is«v 1. i_i      J

We choose the cr in advance so P{ | Sk~i\ gcr| fltA'} ^f1'2- Since the
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minimum of the first term is taken over a finite set of integers, tr, it

is achieved for some o"r. Furthermore we have, for v(j) defined in(14),

P(Ar+i | .S*r_, = ffr)

U    {Sj = v(j)}\Skr.i = o-rJ

= P(U{Sj-Skr-i = V(j) - a-r})

=   P(U{5y_*r+1   =   I[(j  -   kr+l  +   kT-   1)X]   -  <Tr}).

We choose k, by (13) so that this is greater than f1'*.

We have now a sequence {ki} and an associated sequence of events

[Ai} which have the property

p(Ar\ U Ai) ^ f for every r = 1, 2, ■ • • .

Thus

1 - P(Ai i.o.) = lim  lim P( f-| M)

= lim   lim P(Ai)P(Ai+i\Ai) ■ ■ ■ pIa/, \ f| A[)

^ lim  lim (1 - f)""*
ft-* oo   n—»«

= o.

This proves Theorem 3a.

For Theorem 3b, we have from Theorem 1 of Chung and Erdos [2]

P(G() = P{Sni = I(mx)} < An7m.

Therefore  22* F(G.) converges, and by the Borel-Cantelli Lemma,

Theorem 3b is proved

We now use these results to achieve generalizations of the results

of [3].

Corollary to Theorem 3a. // £„ a„/ra1/2 diverges and E\x\2+S

< oo, the statement (8) is true.

The proof is an application of Lemma 2.

Theorem 4. Assuming only the first moment to be finite, if x is

rational the statement (8) is true regardless of the choice of \an}.

Let x = p/q and transform to   Y=qX—p, setting Tn= £?_i   Yi.
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By Theorem 4, Chung and Fuchs [4],

P{PB = 0i.o.} = 1.

Theorem 5. When E» a„/n112 converges, then for almost all (Le-

besgue) real numbers, x, the statement (9) is true.

This proof was communicated to me by Dr. P. Erdos. Choose e

so that ean < 1 for all w. Then let

{«, x} = {n, x: | nx — I(nx) \ < ean},

and let x(», x) be the set characteristic function of {«,*}. We have

for any n

/x(n, x)dx g 2tan
o

and for a given x

A x(n, x)        "    _,„

„_1      W1'2 ,_i

where {w,} is the sequence defined in the statement of Theorem 3.

It is, of course, a function of x. From the above we have

r l   »  x(n, x) A,   2ane
E ^-^-dx g £ - ^ A for all N.

Jo    „_1     »*" „tl   w1'2

Since A does not depend on N, the set of x for which E» x(nx)/n112

converges has measure one. With Theorem lb the proof is completed.

The corollary and Theorem 5 give us almost the same results as

hold in the continuous case, except that when (6) converges there is

an exceptional set on [0, 1) of measure zero which contains all the

rational numbers and such that if £A is in this set the result (8) is

true. It is not known whether the exceptional set contains any irra-

tionals, but a simple argument shows that for any irrational number,

one can choose the sequence {a„} such that the result (9) is true.

Thus, unlike the rationals, the irrationals of the exceptional set de-

pend on the choice of the normalizing sequence. To sketch this argu-

ment, for x irrational let Wi = l, w,+i = Minn>n( {w: \nx — I(nx)\

<|w,x — I(n{x)\ }. By a theorem of Weyl [8, p. 378], |w* — I(nx)\ is

dense on the unit interval and thus {w,} is an infinite set. Now for

e>0 choose a„ so that for w,_igw<w,-, ane< \ ntx — I(n(x) |. Since

o„€< | nx — I(nx)\  for all w, the events £„ are all impossible.

Acknowledgment. I am indebted to Professor K. L. Chung for sug-

gesting the problems and for advising me during the research.
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ON PROJECTIVE GEOMETRY OVER FULL
MATRIX RINGS

RIMHAK REE

1. Introduction. In this note we show that projective geometry

over a ring R and that over the full matrix ring Rn are essentially

the same, and extend the fundamental theorem of projective geom-

etry [l, p. 44] to the case of <£>„-modules, where d> is a division ring.

(By a projective geometry over R we mean a lattice of all i?-sub-

modules of an it-module.) As a special case of these results we have

the following: If «S3, any lattice isomorphism of the lattice of all

left ideals of 4>„ and that of ^m where <£> and SP are division rings, is

induced by an isomorphism of $„ and ^m. We obtain also an exten-

sion of the basis theorem for vector spaces to 4>n-modules.

Other extensions of the fundamental theorem of projective geom-

etry have been made by Baer, for the case of it-modules, where R is a

"primary ring" in his sense [2, p. 304], and the ring of rational

integers [3].

2. Main theorems. In the following, by a ring we always mean

an associative ring with unit element. Let it be a ring with unit

Received by the editors April 17, 1954.


