
PARTIALLY CONTINUOUS DECOMPOSITIONS

R. H. BING

1. Introduction. In this paper we consider collections G of mutually

exclusive compact sets whose sum is a subset X of a metric space.

(We use the convention that a compact set is closed.) We shall be

interested in whether or not G is upper or lower semicontinuous. See

[8; °] for treatments of such collections.

The collection G is upper semicontinuous (or lower semicontinuous)

if for each element g of G and each positive number e there is a posi-

tive number 5 such that if g' is an element of G such that p(g, g') <S,

then g'EV(g, e) (or gEV(g', e)). Here p(A, B) denotes the distance

between the sets A and B and V(A, e) is the set of all points whose

distance from A is less than e.

If {gi} is a sequence of elements of G, the superior limit (or inferior

limit) of {gi} is the set of all points p such that each neighborhood of

p intersects infinitely many (or all but a finite number of the) elements

of {gi}. If these two limits are equal, they are called the limit of

{gi}, and {gi} is said to converge to this limit.

In the case where X is compact, the collection G is upper semicon-

tinuous if for each converging sequence {pi} of points of X, the su-

perior limit of {gi} (gi contains pi) lies in an element of G. The col-

lection is lower semicontinuous if for each such sequence, each ele-

ment that intersects the inferior limit of {gi} lies in it. The collec-

tion G is continuous if it is both upper and lower semicontinuous.

The following scheme reminds us of the definitions of upper and

lower semicontinuity as given in real variables.

Lower semicontinuity <-» go C limit {g,j.

Upper semicontinuity <-> go D limit {gi}.

Continuity <-» go = limit {gi}.

Here {gi} represents a converging sequence of elements of G and

go is an element of G that intersects the limit of this sequence.

If the elements of G are connected, G is called a monotone decom-

position of X. An element (collection) is nondegenerate if it has more

than one point (element). We show in Theorem 4 that if G is a lower

semicontinuous collection each of whose elements is a nondegenerate

continuous curve and A is a closed plane set, then G is also upper

semicontinuous.
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2. Decompositions and transformations. While upper semicontinu-

ous decompositions have been widely studied, the notion of lower

semicontinuous decompositions has not been used nearly so widely.

We list some relationships between partially continuous decomposi-

tions and transformations. For the most part, these statements are

well known for upper semicontinuous decompositions and are no

more difficult to prove in the lower semicontinuous case.

Suppose / is a transformation (not necessarily continuous) of a

compact metric space X onto a set f(X) such that for each point y of

f(X), f_1(y) is closed. Then / imposes a decomposition G on X—

the elements of G are the inverses of the points off(X). Here are two

tests for the upper or lower semicontinuity of G:

1. G is upper semicontinuous if and only if, for each closed subset A

ofX,f-y(A) is closed.
2. G is lower semicontinuous if and only if, for each open subset D of

X, f~lf(D) is open.
Now suppose f(X) has a topology and / is continuous. Then we

have the following results:

3. G is upper semicontinuous if f(X) is metric (even Hausdorff).

4. G is lower semicontinuous if f(X) is Ti and f is open.

Conversely, suppose G is a decomposition of X. Then there is a

continuous transformation g of X determining G and satisfying the

following conditions.

5. g(X) is metric if G is upper semicontinuous.

6. g(X) is Ti and g is open if G is lower semicontinuous.

We may regard the elements of G as the elements of the space g(X).

If U is an open set in X, the collection of elements of G which lie in

U is an open set in the metric space g(X) of statement 5; the collec-

tion of elements of X which intersect U is an open set in the T\

space g(X) of statement 6.

3. Reducing lower semicontinuous collections. Here we see how to

reduce a locally compact continuum with a lower semicontinuous

decomposition to a compact continuum with a decomposition which

comes closer to being continuous. We define a continuum to be a

closed connected set which is not necessarily compact.

If gi, g2 are two sets, the Hausdorff distance H(gi, g2) between them

is the least upper bound of p(x, g,); «=1, 2; x£gi+g2.

Theorem 1. Suppose G is a monotone lower semicontinuous decom-

position of a locally compact continuum X and G has more than one

element. For each element go of G and each positive number e there is a

compact continuum M such that M is the sum of elements of G, M prop-
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erly contains g0, and the Hausdorff distance between each pair of ele-

ments of G in M is less than e.

Proof. Regard X as all of space. Since a locally compact connected

metric space is perfectly separable, there is a countable basis for X—

that is, a countable collection {.£>,•} of open sets such that each open

set in X is the sum of elements of {Di}.

If there is a continuum in X—Di that properly contains go and

which is the sum of elements of G, let Mi be such a continuum; other-

wise Mi = X. If there is a continuum in Mi — D2 which properly con-

tains go and is the sum of elements of G, let M2 be such a continuum;

otherwise M2 = Mi. In general, Mi+i is a subcontinuum of Mi which

properly contains go and is the sum of elements of G; it misses Di+i

if this is possible; otherwise Mi+i= Mi.

The intersection of Mu M2, • • • is a closed set M' that contains go

and is the sum of elements of G. We show that M' = g0.

Let N(e) be the sum of all elements of G in M' whose distance (not

Hausdorff distance) from g0 is greater than or equal to e. It follows

from the lower semicontinuity of G that N(e) is closed. Since M' = g0

+N(l)+N(l/2)+N(l/3)+ • • • , it follows from the Baire category

theorem that unless g0 = M', there is an integer j such that N(l/j)

contains a nonnull subset E of M' open relative to M'.

Assume go is not a component of M'. Let R be a continuum in

M' — N(l/j) that properly contains go and M" be the closure of the

sum of all elements of G that intersect R. Then M" does not intersect

E, but properly contains go, and is the sum of elements of G. If p is

a point of E, there is an integer r such that DT contains p and Dr ■ M'

lies in E. But MT would not contain p because M" is a continuum in

M' — DT (hence in Mr-i—DT) which properly contains go and is the

sum of elements of G. Hence, the assumption that go is not a com-

ponent of M' has led to the contradiction that the point p of M' does

not belong to M'.
Since g0 is compact, lies in an open set D whose closure is compact,

and is a component of the intersection of the decreasing sequence

Mi, M2, • • • of continua, go is this intersection.

Since G is lower semicontinuous there is a positive number 8 such

that if g is an element of G such that p(g, go) <5, then for each point p

of go, p(P, g) <e/2. Since g0 is the intersection of the continua of

Mi, Mi, • • • and lies in an open set whose closure is compact, there

is an integer k such that Mh is compact and for each point p of Mk,

p(Pt go) is less than either e/2 or 5. We can let M = Mk because if g

is an element of G in Mk, then H(g, go) <e/2.

We note that the preceding theorem is not true if we replace lower
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semicontinuity by upper semicontinuity. The theorem implies that

if go is an element of G there is a sequence of different elements of G

converging to go.

Consider two examples of lower semicontinuous decompositions.

Example 1. We describe a lower semicontinuous decomposition

G, of a unit cube into arcs and disks. The decomposition is not upper

semicontinuous.

Consider a base B of this cube. If 5 is a slice of the cube parallel

to B and at an irrational distance from B, S is an element of Gt.

If S is a slice of the cube at a distance p/q (in lowest terms) from

B, there is a continuous decomposition G(S, e/q) of 5 such that each

element of G(S, e/q) is an arc which comes within e/q of each point

of S. Each element of G(S, e/q) is an element of G.

Example 2. We may be unable to get M for Theorem 1 on which G

is continuous. We give here an example of a lower semicontinuous

decomposition G of a Hilbert cube such that if G' is any infinite sub-

collection of G whose sum is a continuum, G' fails to be upper semi-

continuous.

We may regard the Hilbert cube as the cartesian product G

XC2XdX • • • where Ct is a unit cube. Frequently a Hilbert cube

is considered as the cartesian product of closed intervals /„ where /„

= [ —1/re, l/«] but by adjusting the metric we may suppose /„

= [0, l]. Similarly, we may choose a metric for GXC2XC3 " • "to

give it the familiar metric for the Hilbert cube. For each positive

number e and each cube C, let G(e, d) be a particular decomposition

of d into disks and arcs as described in Example 1. There is a count-

able collection W(e, d)={wj} of arcs in G(e, d) such that each

continuum in d which is the sum of infinitely many elements of

G(e, d) contains some element of W(e, d). Let G'(e, d)=G(e, d)

-W(e,d).

If glEG'(l, Ci), g1XC2XC3X • • • is an element of G. If w\

EW(1, Ci), consider G(e\, C2) where e\ = l/iq and w\ is in the slice of

G at a distance of p/q from the base of G.

If g2EG'(e), C2), w\Xg2XdX • • • is an element of G. If w)

EW(e\, C2), consider G(e2, C3) where e2 = e\/jq and w2 is in the slice of

C2 at a distance of p/q from the base of C2. If g3EG'(e2, d), w]Xw)

Xg3XCtX • ■ • is an element of G.

The process is continued. An element of G is either of the form

wli X wl, X wn, X ■ ■ ■ , g1 X C2 X C, X ■ ■ ■ ,   or

wli X wn, X • • • X w'n{ X g'+1 X Ci+2 X ■ • ■
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where wnEW(tn~\, C,), g^GG'^*, d), &, = ££/n<q, and wni is in

the slice of d at a distance of p/q from the base of C,-.

Suppose M' is a continuum in the Hilbert cube which is the sum

of a subcollection G' of G. First we show that if M' intersects each

of S'XC2XC3X • • -and S"XC2XC3X ■ • -where S' and S" are

different slices of G parallel to its base, then G' is not upper semi-

continuous. There is a sequence of slices Si, S2, ■ • ■ each at an irra-

tional distance from the base of Ci converging to a slice So at a rational

distance from this base and such that each Si separates S' from S".

Then G' is not upper semicontinuous at any of its elements in

So X C2 X C3 X • • • .
Suppose M' lies in 5 X C2 X C3 X ■ ■ -but intersects two elements of

G(l, Ci) in the slice S. Then there is a sequence gi, g2, ■ ■ • of elements

of G'(l, Ci) in this slice converging to an element w of W(l, Ci) in

this slice and such that M' intersects and contains each giXC2XC3

X ■ ■ ■ . But G' is not upper semicontinuous at any element in

wXC2XC3X

We have found that if G' is continuous, the first coordinates of any

two elements of G' are the same. Here w„., g', and C,- are regarded as

coordinates of an element of G'. A similar argument shows that the

other coordinates are also equal. Hence, G' has only one element.

Question. For some continua M (for an arc but not for a Hilbert

cube) the following statement is true: For each nondegenerate

monotone lower semicontinuous decomposition G of M there is a

subcontinuum M' of M which is the sum of an infinite subcollection

G' of G such that G' is continuous. It would be interesting to know for

what types of continua this statement is true. The statement with

"lower" replaced by "upper" is not true for any nondegenerate com-

pact continuum.

If we had not been interested in getting a connected M, we would not

have needed to suppose that G is monotone. We would have been

able to conclude that the collection of elements of G in M is continu-

ous. Consider the following result.

Theorem 2. Suppose G has uncountably many elements and is a lower

semicontinuous decomposition of a locally compact separable metric

space X. There is an uncountable subcollection G' of G such that G' is

continuous and the sum of the elements of G' is compact.

Proof. Since X has a countable covering {Di} by open sets with

compact closures and each element of G is covered by. a finite sub-

collection of {Di}, there is a finite subcollection of {D,} that covers

uncountably many elements of G. Hence, with no loss of generality
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we suppose that X is compact.

The methods of Theorem 1 reveal that there is a compact set Af0

which is the sum of uncountably many elements of G such that if

gi, g2 are two elements of G in Mo, then H(gu g2) <1.

Again these methods reveal that Mo contains two mutually exclu-

sive compact subsets C\, C\ such that each is the sum of uncountably

many elements of G and such that if gi, g2 are elements of G in d

(i = l,2), then H(gi, g2)<l/2. Let Mi = C[ + C\.
In general, Mi is the sum of 2* mutually exclusive compact sets

C[, C2, ■ • ■ , C2t such that C) is the sum of uncountably many ele-

ments of G and if gi, g2 are two elements of G in C], H(gi, g2) <l/2*.

Each C) contains two of the compact sets C,+1, Cl+1 in Mi+i.

The collection G' of elements of G in M' = M0-Mi- • ■ • is continu-

ous. Also, G' has uncountably many elements since it is a Cantor set

with respect to its elements as points.

Although this concludes the proof of Theorem 2, it is of interest

that if X is compact, and N(e) is the sum of the elements g of G at

which G fails to be upper semicontinuous by e (for each i there is a

gi in G such that p(g, gi) <l/i, gi(£ V(g, e)), then N(e) is closed and

contains no open set. Hence the sum of the elements of G at which

G is continuous is a dense Gt set.

In a bicompact connected Ti space it does not follow that for each

pair of points there is a continuum irreducible between them. Hence,

Theorem 3 shows that not each bicompact 7\ space is a space g(X)

of the type referred to in statement 6 of the preceding section

Transformations and decompositions. The following result follows

from the same type of argument given in the proof of Theorem 1.

Theorem 3. If G is a monotone lower semicontinuous decomposition

of a connected compact metric space X and A, B are two nonnull closed

subsets of X, there is a continuum M in X which is irreducible with re-

spect to being a continuum which is the sum of elements of G and inter-

sects each of A, B.

If Ma and Mb denote the sum of the elements of G in M which inter-

sect A and B respectively, then each of M—MA, M—Mb, and M

— (Ma + Mb) is connected.

4. Decompositions whose elements are continuous curves. In this

section we shall be interested in a lower semicontinuous decomposi-

tion G of a closed planar set such that the elements of G are non-

degenerate continuous curves. (A continuous curve is a compact

locally connected continuum.) We find that G must be upper semi-

continuous also. Example 1 shows that the hypothesis of Theorem 4
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must include the condition that the sum of the elements of G is planar.

Theorem 4. Suppose G is a lower semicontinuous decomposition of a

closed planar set such that each element of G is a nondegenerate continu-

ous curve. Then G is also upper semicontinuous.

Proof. Suppose Ei, E2, E3 are three point sets. We say that the arc

a is hooked with respect to Ei, E2, E3 if it contains two arcs ai, ct2

with at most an end point in common such that oti intersects all

three of Ei, E2, E3 and a2 intersects two of them. Compare this

notion of being hooked with the idea of a sequence of chains being

hooked as given by Anderson on page 650 of [l].

On the assumption that G is not upper semicontinuous we show

that there is a decreasing sequence of compact continua Mi, M2, ■ • •

and three decreasing sequences of domains Dn, Di2, • ■ • (i=l, 2, 3)

such that:

(a) Mj is the sum of uncountably many elements of G.

(b) Mi ■ M2 ■ • • • is an element a0 of G which is an arc.

(c) Each element of G in Mj which is an arc is hooked with respect

to Dij,Dij, D3j.

(d) Dij+iEDij and Da-Da-  • • • is a point pi with pi^p27^p39^pi.

But since the arc a0 cannot be hooked with respect to the three

points pi, p2, p3 there is an integer j such that a0 is not hooked with

respect to £>iy, D2i, D3j. Hence the assumption that G is not upper

semicontinuous will have led us to a contradiction.

Suppose g is an element of G at which G is not upper semicontinu-

ous. Then there is a sequence of elements gi, g2, • ■ ■ converging to

a closed set W which properly contains g. From Theorem 1 there is a

compact continuum M in W which properly contains g, is the sum

of elements of G, and is such that if g', g" are two elements of G in M,

then the Hausdorff distance II(g', g") <1.

Let Gm be the collection of elements of G in M. We now establish

two properties of Gm that we shall use.

Property 1. All but a countable number of elements of GM are

arcs. Since the plane does not contain uncountably many triods, all

but a countable number of elements of Gu are arcs or simple closed

curves. If Gm contained uncountably many simple closed curves, it

would contain three such that some one of the three separated the

other two from each other in the plane. This is impossible for the

sum of the three simple closed curves would belong to the inferior

limit of a sequence of plane continua which does not intersect the

sum.

Property 2. Gm is not upper semicontinuous. If Gm were upper
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semicontinuous, it would not contain infinitely many elements of the

sequence gi, g2, • • • . Anderson has shown [l ] that if G' is a continu-

ous collection of nondegenerate continuous curves filling a compact

continuum M', then M' contains the interior of a circle. But M can-

not contain the interior of a circle since it is a subset of the inferior

limit of the sequence gi, g2, • • • which has infinitely many elements

which do not intersect M. Hence, Gm is not upper semicontinuous.

We note that if M' is any subcontinuum of M which is the sum of

uncountably many elements of G, then the collection of elements of

G in M' has properties 1 and 2.

Let a be an arc in M which is an element of G, and Du, D2U Dn be

three mutually exclusive domains intersecting a. We show that there

is a continuum Mi in M which is the sum of uncountably many ele-

ments of G and such that each arc in Mi which is an element of G is

hooked with respect to Du, D2i, D31.

Let Di, D2, • • • , Dn be a chain of open topological disks covering

a such that DiDj is connected or null according as i and j are or are

not adjacent and each of Du, D2i, D31 contains a link of the chain

which intersects a. We suppose that Dni intersects a, DniEDn, and

re!<re2<W3. For convenience we suppose that Dni, Dn%, Dni are the

interiors of circles with centers on the x-axis and that if L is the part

of the x-axis to the left of Dnt and R is the part to the right of D„„

then L+R does not intersect any link of the chain.

By Theorem 1 there is a continuum M' in M such that M' is covered

by D\, D2, • • ■ , Dn, M' contains a, and M' is the sum of an uncount-

able subcollection G' of G such that each element of G' will intersect

each of £>„„ £>„,. Each element will also intersect Dni because D„, is

between Z>„, and Z>„3.

In each element g of G', select an arc h„ which is irreducible from

Dm to Dnt and denote the collection of all such arcs by H. The ele-

ments of H have a natural linear order—for example, h' is above h"

if it lies in the complementary domain of L+Dm+h" +Dn2+R which

is unbounded from above.

Since G' is not upper semicontinuous, there is a converging se-

quence g2, gz, • • ■ of elements of G' and two elements go, gi of G'

which belong to the inferior limit of g{, gl, • • • . Let hi be the ele-

ment of H in g!. Since some subsequence of h2, h%, ■ ■ ■ is monotone,

we suppose that hi+i is above hi if *>1.

In the linear order of H, one of the sets h0, hi is separated from all

but a finite number of elements of h2, h3, • • • by some element of

ho, hi, k2, • • • . For convenience we suppose that hj separates h0 from

each element of hr, hr+i, • • • .
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Let A be a connected neighborhood in Dni which contains a point

of ho but no point of hj. Since G' is lower semicontinuous, some

element gi of g'r, g'r+l, ■ • ■ intersects N. Then the component of

gi —(Dm+Dm) that contains hk also intersects D„v D„it and Dni but

not N, while another component of it intersects N. Now if Mx is a

continuum sufficiently close to gi (and there is one sufficiently close

by Theorem 1) and the sum of uncountably many elements of G',

then each element of G' in Mx which is an arc is hooked with respect

to Dnx, D"2< and P>m an(I hence with respect to Dn, D2i, D3i.

Now that we have obtained Dn, D2i, D3h and Mu all we need is

an iteration of the preceding argument to get the three sequences

Dn, Da, ■ ■ ■ (i=l, 2, 3) and the sequence Mi, M2, ■ ■ ■ . Once Mn,

Din, D2n, D3n are found, we consider an arc a in Mn which is an

element of G. Let Djn+i 0 = 1, 2, 3) be an open set of diameter less

than l/« which intersects a and whose closure lies in Dj„. We use a

1/w-chain covering a and show the existence of M„+i by the same

methods used to show the existence of Mi. The reason that condition

(b) is satisfied is that an arc is the only nondegenerate snake-like

continuous curve. (A continuum is snake-like [4] if for each positive

number e it can be covered by an €-chain.)

Theorem 4 does not hold if we omit some of the conditions in the

hypothesis. We cite some examples to illustrate this.

Example 3. If the requirement were not made that the elements

of G be nondegenerate, we could have let G be the collection of points

on the y-axis from (0, 0) to (0, 1) and the collection of vertical in-

tervals of length 1 with lower ends on the sect (a, b] where a = (0, 0)

and b = (l, 0). Then G is lower semicontinuous but not upper semi-

continuous.

Example 4. It is essential to suppose that the elements of G be

continuous curves and not just continua. Let M be a nondegenerate

hereditarily indecomposable continuum. Such continua have been

described by Knaster [6], Moise [7], and Bing [2; 3]. Kelley has shown

[5] that there is a continuous decomposition G' of such a continuum

into nondegenerate continua. Let g be an element of G' and G" be

a continuous decomposition of g into nondegenerate continua. Then

the collection consisting of elements of G" and elements of G' other

than g is lower semicontinuous but not upper semicontinuous.
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UNE PROPRIETE TOPOLOGIQUE DES
DOMAINES DE RUNGE

JEAN-PIERRE SERRE

Nous dirons qu'un domaine X de l'espace numerique complexe C"

est un domaine de Runge si:

1. X est un domaine d'holomorphie.

2. Toute fonction holomorphe sur X est limite uniforme sur tout

compact de polyn6mes.

On sait que, si « = 1, X est simplement connexe. Nous allons gen-

eraliser ce resultat:

Theoreme. Le nime nombre de Belli d'un domaine de Runge de C"

est nul.

Demonstration. Soit C"(X) l'espace vectoriel des formes dif-

ferentielles o>=f(zi, • • • , z„) dzi/\ ■ • • /\dzn, ou / est holomorphe

sur X. Une telle forme est toujours fermee, i.e. dw = 0. Soit Bn(X) le

sous-espace de Cn(X) forme des elements w qui sont de la forme da,

ou a est une forme differentielle holomorphe de degre re —1. D'apres

le Theoreme 1 de [2], qui s'applique a. cause de l'hypothese 1, l'espace

quotient Cn(X)/Bn(X) est isomorphe a Hn(X, C), et tout revient

done a. montrer que B"(X) = Cn(X).

Munissons Cn(X) de la topologie de la convergence compacte.

Alors:

(a) B"(X) est fermi dans Cn(X).
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