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COEFFICIENTS
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1. Introduction. Brunn [l] proved a theorem on a determinant (an

alternant) the elements of which are elementary symmetric functions

of positive variables. This theorem reflected by us in a sharper form

and applied to polynomials (Theorem 1) is the basis of further in-

vestigation. A special case is Theorem 2, important applications of

which are Theorems 3 and 4. In §2 we prove these results and in §3

we give some examples. In §4 the foregoing is applied to absolutely

monotonic functions; the result is Theorem 5, a generalization of a

theorem of Rosen bloom [2]. In §5 an extension of Theorem 3 is

deduced (Theorem 6) by considering a function of two variables.

2. Let Sj be the elementary symmetric function of w variables

Xi, x2, • • • , xn, defined by

Sj = 22 *i*s ■ ■ ■ Xj for j = 1, 2, • • • , n;

So = 1; Sj = 0 for j = — 1, — 2, • • •   and./ > w.

Theorem 1. The determinant (Skii), i=l, 2, • • ■ , q;j = l, 2, • • • ,

q, with

ft.-.m — ft,-,m+i = k(m) > 0,

km+i,i — km,i = k*(m) > 0,

i = 1, 2, ■ ■ ■ , q; m = 1, 2, ■ ■■ , q - 1,

can be written as a symmetric polynomial in Xi, x2, • • • , x„ with non-

negative coefficients.

Proof. Obviously the determinant in question is a symmetric

polynomial in the considered variables.

For w = 1 the determinant equals zero or unity or a power of Xi.

Now applying induction we assume the assertion to be true for w — 1

and prove the truth for the case n. Therefore we put

(2) Sk   =   Sk +   XnSk-l,

where S£ differs from Sk in referring to the variables with xn left out.

Substituting (2) in the determinant we can expand this in increasing

powers of xn, hence
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(3) (Skti) = 22Akxl
fc=0

where Ak is a sum of determinants the elements of which are ele-

mentary symmetric functions of Xi, x2, • • • , xn-i. The element in-

dices satisfy (1), hence from our assumption it follows that each Ak

is a polynomial in xu x2, • • ■ , xn-i with non-negative coefficients.

Because of (3) our assertion is proved.

An immediate consequence of Theorem 1 is

Theorem 2. Let ctj=( — 1)'Sj. Then the determinant

(o-n+i-kj) (i = 0, 1, ■ ■ ■ , q;j = 0, 1, ■ ■■ , q;0 = k0 < ki < ■ ■ ■ < kt)

multiplied by the factor ( — 1)M, where

M = m + (m — ki) + (m — k2) + • • •

+ (m - kg) + 1 + 2 + ■ ■ ■ + q,

is expressible as a symmetric polynomial in Xi, x2, • • • , xn with non-

negative coefficients.

Now we prove the following

Theorem 3. Let

fh+i(x) = aM + ahix + ■ ■ ■ + ah,n+Pxn+p     (h = 0, 1, ■ • • , n — 1),

where n^2 and p^0,ben polynomials with real coefficients such that all

determinants D of the nth order, taken from the matrix |a,;|, i = 0, 1,

• • • , n — 1; j = 0, 1, • • • , n+p, are non-negative.

If for n variables Xi, x2, • • • , x„, with x.-^x,- for ij*j, we put  V

= V(x)=the determinant (xi), i=l, 2, • • • , n; 7 = 0, 1, • • • , n — 1,

then the expression

(4) ifiix,))/V.

can be written as a symmetric polynomial in xu x2, • • • , xn with non-

negative coefficients.

Proof. From a theorem of Garbieri [3 ] it follows that (4) is equal

to the determinant of (n+p + l)th order

(Ba)< Ba - *a      (i = 0, 1, ■ ■ ■ , n - 1; j = 0, 1, ■ ■ ■ , n + p),

B<i = ff<-y       (i = n,n + 1, ■ ■ ■ ,n + p;j = 0, 1, ■ ■ ■ ,n + p),

where Oj is defined in Theorem 2. By expanding (5) in terms of the

(p + l)-line minors of the last p + 1 rows (let i denote the rows) we

see that (Bi,) is the sum of a number of expressions each of which is
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a product of a determinant D, the corresponding determinant

(ffn+i-kj), »-l, 2, • • • , p + 1; j=l, 2, ■ ■ ■ , p + 1; l^fti<ft2< • • •

<kp+i^n+p + l, and the factor (-l)s where S=(n+l) + (n+2)

+ • • • +(n+p + l)+ki+k2+ • • • +kp+i. Now the exponent M (see

Theorem 2) related to this last determinant is equal to (n + l—ki)

+ ■ • • +(n+l-*rn)+l+2+ • • • +p, so that M=S (mod 2).

From this conclusion and Theorem 2 the assertion follows.

A special case of Theorem 3 (put /*(x)=x**, h=l, 2, ■ ■ • , n) is

Theorem 4 (P. C. Rosenbloom [2, p. 459]). If ku k2, • • • , K
are integers with 0gfti<£2< • • • <kn, then

(6) (Xi')/V; i,j= 1,2, ...,»,

*s a symmetric polynomial in X\, x2, • ■ • , x„ wi/ft non-negative coeffi-

cients.

Remark. The last result can also be obtained by application of a

theorem of H. Naegelsbach [4].

Acting in this way we find for the expression (6) the determinant

"n      "n-l'On—*i+l       S„_*,_! -Sn—kl+l      Sn—*j-l  '       " Sn—kn+l

0 Sn      -Sn-ki+2       Sn-ki      ■Sn-ki+2       Sn-kt       '   '   *  Sn-kn+2

0     0.5i

whose elements satisfy the conditions of Theorem 1.

3. Examples. 1. If for ft = l, 2, ••■,«; p^O,

n+p

fh(x) = 22 ah      x with 0 < ai < • ■ • < o„,

/ftcw (fi(xj))/V; i, j=l, 2, • • • , w, w a symmetric polynomial in

Xi, x2, ■ • • , x„ with non-negative coefficients.

This follows from the fact that the determinants of the wth order

taken from the matrix

\oi       |, i = 1, 2, ■ ■ ■ , n; j = 1, 2, ■ ■ ■ , n + p + 1,

divided by the positive number V(a) are polynomials in the positive

oil oj, • • ■ , o» with non-negative coefficients, as follows from Theo-

rem 4.

2. J/ *fte determinants of the nth order taken from the matrix \ a,/|,

i=l, 2, • • • . n;j=l, 2, • • • , n+p, are positive, and if
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n+p    n ,

A>, = 22 H aiqxhXj , i, j = 1, 2, • • • , n,
0-1 h-1

where the kh are integers with OgJi< • • • <kn, then (Ai})/V2 (i, j

= 1,2, • • ■ , n) is a symmetric polynomial with non-negative coefficients.

Proof. Putting fi(x) = 22i-i a>o*a (* = 1, 2, - - • , n), we have

n n+P n        .

An = 22 */ 23 <*««** = 22 xi fi(xh),
A-l i-l A-l

so that

(Aij) = (x^XMxj))        (i,j= 1,2, •••,«).

Application of Theorem 3 completes the proof.

4. Theorem 5. If f(x) and g(x) are power series with non-negative

coefficients converging in the interval 0^x<a, then the expression

(7)     (-1)"    det | lx,- • • • xT~ f(uxi)g(vxi ■ ■ ■ s,-ix,+i ■ ■ ■ xn)\ /V,

i = 1, 2, • • • , n,

can be written as a power series in the variables Xi, x2, • • • , xn, u, v

with non-negative coefficients converging in the range

1
0 ^ Xi, x2, ■ ■ ■ , xn < a; 0 ^ « ^ 1; 0 ^ v ^-•

an~l

Proof. Putting

oo oo

fix) = 22 a9x",        g(x) = 22 bmxm, a, 3; 0, bm ̂  0,
4—0 m—0

then (7) can be expressed as

(—1)     22 aiu I 1*<- • • Xi   Xig(vxi ■ ■ ■ x,_ix,+1 •••*») | /F
a-0

= (-1)"    Z) Z) aqbmuvm | lxi ■ ■ ■ x"   x'(xi ■ ■ ■ x,_ix,+i • • • x„)m|/F
0—0 m—0

/       4\B_1V^  V        .       q  m ,     m   m+1 m+»-3   m+q     ,

= (— 1)     2-, 2-, aqbmu v   I Xi xt     ■ ■ • Xi       Xi    11 /V
0—0 m—0

oo oo
ZV>        t        «  ml   <     m   m+1 m+n-S   m+0|    /Ir

2^ fljOm« »    | lX,- Xi       ■ ■ ■  Xi Xi      IIV,
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so that from Theorem 4 the correctness of this theorem follows.

Remark. For w = 3 this theorem is a result of Rosenbloom about

absolutely monotonic functions [2]. (The range of « and v given

there is not quite correct.)

5. Theorem 6. Let F(x, y) be the function 22<-S S"-o aa x{yf
(p^O), with the property that all determinants D of the nth order

taken from the matrix \ o,-,-| are non-negative. Let (xi, x2, • • • , xn) and

(yu yi, • • • 1 Vn) with x^Xj, ytT^yj (i^j) be two sets of variables.

Then the expression

(8) (F(xi, yi))/V(x)V(y).

is a polynomial, symmetric in xi, x2, ■ ■ • , xn as well as in yi, y2, • • ■ ,

y„ with non-negative coefficients.

Proof. On account of another theorem of Garbieri [3] the expres-

sion (8) is identical with

(9) (- l)^(tij), i, j = 0, 1, • • • , n + 2p + 1,

where

tij = aa (i, j = 0, 1, • • • , n + p)

= <r ;_<_,_, (t=0, 1, ■ • • , n+p, j = n+p+l, • • • , n+2p+1)

= <r,_I_p_1      (i = n+p+l, ■ ■ ■ , n+2p+l, j = 0, 1, ■ ■ ■ , n+2p+l),

where (— l)'<ry and (— 1)'<Tj are the elementary symmetric functions of

Xi, x2, ■ • • , xn and yu y2, ■ • ■ , y„ respectively. We develop the de-

terminant in (9) in terms of the (p + l)-line minors of the last p + 1

rows. The term corresponding with the minor indicated by the

column-indices fti, k2, ■ ■ ■ , kp+i, say 9JJ, possesses the sign

(_l)(n+P+2)+(n+3>+3)+...+(n+2p+2)+*i+*!ri-+*jrfl  =   (_]W_

If in 2)1 we replace each <r;- by ( — l)'sy, then the new minor 2)2' has

the sign

(_1)(n-*l+l)+(n-*2+l)+---+(»-*p+l+l)+l+2+...+p  _   (_1)tf_

The complementary minor of 2ft with elements a<,- and a'k, say 2ft,

can be expanded in terms of the (p + l)-line minors of the last P + 1

columns. The term in the expansion of 2ft corresponding with the

minor 2c indicated by the row-indices q\\, q2, • ■ ■ , qp+i is provided

with the sign

(_1)(n+l)+(n+2)+..-+(n+p+l)+ai+5j+.-.+alrf-l  _   (—1)^.
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In 9t again we replace the a' by S', and the new minor 9<l' has the

sign

(_l)(n-oi+l)+(n-oS+l)+---+(n-Op+l+l)+l+2+---+P  =   (—1)0.

Thus the determinant in (9) is the sum of terms each of which is

a product of 3 determinants 90F, W, D and the factor (-l)"+"+r+Q.

By simple calculation we see that

M + N + P + Q= (p+1)2 (mod 2).

As from our assumption the determinants D are non-negative, it fol-

lows that each term in the development of (9) has the positive sign,

on account of (-l)(H-»+<*+i>s = l.

The application of Theorem 1 to each 5DF and 9F completes the

proof.
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