SYMMETRIC POLYNOMIALS WITH NON-NEGATIVE COEFFICIENTS

L. KUIPERS AND B. MEULENBELD

1. Introduction. Brunn [1] proved a theorem on a determinant (an alternant) the elements of which are elementary symmetric functions of positive variables. This theorem reflected by us in a sharper form and applied to polynomials (Theorem 1) is the basis of further investigation. A special case is Theorem 2, important applications of which are Theorems 3 and 4. In §2 we prove these results and in §3 we give some examples. In §4 the foregoing is applied to absolutely monotonic functions; the result is Theorem 5, a generalization of a theorem of Rosenbloom [2]. In §5 an extension of Theorem 3 is deduced (Theorem 6) by considering a function of two variables.

2. Let S_j be the elementary symmetric function of n variables x_1, x_2, \dots, x_n , defined by

$$S_{j} = \sum x_{1}x_{2}\cdots x_{j} \qquad \text{for } j = 1, 2, \cdots, n;$$

$$S_{0} = 1; S_{j} = 0 \qquad \text{for } j = -1, -2, \cdots \text{ and } j > n.$$

THEOREM 1. The determinant $(S_{k_{ij}})$, $i=1, 2, \cdots, q$; $j=1, 2, \cdots, q$, with

(1)

$$k_{i,m} - k_{i,m+1} = k(m) > 0,$$

$$k_{m+1,i} - k_{m,i} = k^{*}(m) > 0,$$

$$i = 1, 2, \cdots, q; m = 1, 2, \cdots, q - 1,$$

can be written as a symmetric polynomial in x_1, x_2, \dots, x_n with non-negative coefficients.

PROOF. Obviously the determinant in question is a symmetric polynomial in the considered variables.

For n=1 the determinant equals zero or unity or a power of x_1 . Now applying induction we assume the assertion to be true for n-1and prove the truth for the case n. Therefore we put

(2)
$$S_k = S'_k + x_n S'_{k-1},$$

where S'_k differs from S_k in referring to the variables with x_n left out. Substituting (2) in the determinant we can expand this in increasing powers of x_n , hence

Received by the editors May 12, 1952 and, in revised form, April 4, 1954.

(3)
$$(S_{k_{ij}}) = \sum_{k=0}^{q} A_k x_n^k$$

where A_k is a sum of determinants the elements of which are elementary symmetric functions of x_1, x_2, \dots, x_{n-1} . The element indices satisfy (1), hence from our assumption it follows that each A_k is a polynomial in x_1, x_2, \dots, x_{n-1} with non-negative coefficients. Because of (3) our assertion is proved.

An immediate consequence of Theorem 1 is

THEOREM 2. Let $\sigma_j = (-1)^i S_j$. Then the determinant (σ_{m+i-k_j}) $(i = 0, 1, \dots, q; j = 0, 1, \dots, q; 0 = k_0 < k_1 < \dots < k_q)$ multiplied by the factor $(-1)^M$, where

$$M = m + (m - k_1) + (m - k_2) + \cdots + (m - k_q) + 1 + 2 + \cdots + q,$$

is expressible as a symmetric polynomial in x_1, x_2, \dots, x_n with non-negative coefficients.

Now we prove the following

THEOREM 3. Let

$$f_{h+1}(x) \equiv a_{h0} + a_{h1}x + \cdots + a_{h,n+p}x^{n+p} \quad (h = 0, 1, \cdots, n-1),$$

where $n \ge 2$ and $p \ge 0$, be n polynomials with real coefficients such that all determinants D of the nth order, taken from the matrix $|a_{ij}|$, $i=0, 1, \dots, n-1$; $j=0, 1, \dots, n+p$, are non-negative.

If for n variables x_1, x_2, \dots, x_n , with $x_i \neq x_j$ for $i \neq j$, we put V = V(x) = the determinant (x_i^j) , $i = 1, 2, \dots, n; j = 0, 1, \dots, n-1$, then the expression

$$(4) \qquad \qquad (f_i(x_j))/V.$$

can be written as a symmetric polynomial in x_1, x_2, \dots, x_n with non-negative coefficients.

PROOF. From a theorem of Garbieri [3] it follows that (4) is equal to the determinant of (n+p+1)th order

(5)
$$\begin{array}{l} (B_{ij}), \ B_{ij} = a_{ij} \quad (i = 0, 1, \cdots, n-1; j = 0, 1, \cdots, n+p), \\ B_{ij} = \sigma_{i-j} \quad (i = n, n+1, \cdots, n+p; j = 0, 1, \cdots, n+p), \end{array}$$

where σ_i is defined in Theorem 2. By expanding (5) in terms of the (p+1)-line minors of the last p+1 rows (let *i* denote the rows) we see that (B_{ij}) is the sum of a number of expressions each of which is

a product of a determinant D, the corresponding determinant (σ_{n+i-k_j}) , $i=1, 2, \dots, p+1$; $j=1, 2, \dots, p+1$; $1 \le k_1 < k_2 < \dots < k_{p+1} \le n+p+1$, and the factor $(-1)^S$ where $S = (n+1)+(n+2) + \dots + (n+p+1)+k_1+k_2+\dots+k_{p+1}$. Now the exponent M (see Theorem 2) related to this last determinant is equal to $(n+1-k_1) + \dots + (n+1-k_{p+1})+1+2+\dots+p$, so that $M \equiv S \pmod{2}$. From this conclusion and Theorem 2 the assertion follows.

A special case of Theorem 3 (put $f_h(x) = x^{k_h}$, $h = 1, 2, \dots, n$) is

THEOREM 4 (P. C. ROSENBLOOM [2, p. 459]). If k_1, k_2, \dots, k_n are integers with $0 \leq k_1 < k_2 < \dots < k_n$, then

(6)
$$(x_i^{k_j})/V;$$
 $i, j = 1, 2, \cdots, n,$

is a symmetric polynomial in x_1, x_2, \dots, x_n with non-negative coefficients.

REMARK. The last result can also be obtained by application of a theorem of H. Naegelsbach [4].

Acting in this way we find for the expression (6) the determinant

 $\begin{vmatrix} S_n & S_{n-1} \cdot S_{n-k_1+1} & S_{n-k_1-1} \cdot S_{n-k_2+1} & S_{n-k_2-1} \cdot \cdot \cdot S_{n-k_n+1} \\ 0 & S_n & \cdot S_{n-k_1+2} & S_{n-k_1} \cdot S_{n-k_2+2} & S_{n-k_2} \cdot \cdot \cdot S_{n-k_n+2} \\ \cdot & \cdot \\ 0 & 0 \cdot \cdot \cdot \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ 0 & 0 \cdot \cdot & \cdot \\ \end{vmatrix}$

whose elements satisfy the conditions of Theorem 1.

3. Examples. 1. If for $h = 1, 2, \dots, n; p \ge 0$,

$$f_{h}(x) = \sum_{i=0}^{n+p} a_{h}^{h+i-1} x^{i} \qquad with \ 0 < a_{1} < \cdots < a_{n},$$

then $(f_i(x_j))/V$; *i*, $j=1, 2, \dots, n$, is a symmetric polynomial in x_1, x_2, \dots, x_n with non-negative coefficients.

This follows from the fact that the determinants of the nth order taken from the matrix

$$|a_i^{i+j-2}|, \quad i = 1, 2, \cdots, n; j = 1, 2, \cdots, n + p + 1,$$

divided by the positive number V(a) are polynomials in the positive a_1, a_2, \cdots, a_n with non-negative coefficients, as follows from Theorem 4.

2. If the determinants of the nth order taken from the matrix $|a_{ij}|$, $i=1, 2, \cdots, n; j=1, 2, \cdots, n+p$, are positive, and if

$$A_{ij} = \sum_{q=1}^{n+p} \sum_{h=1}^{n} a_{iq} x_h^q x_j^{k_h}, \qquad i, j = 1, 2, \cdots, n,$$

where the k_h are integers with $0 \le k_1 < \cdots < k_n$, then $(A_{ij})/V^2$ (i, j = 1, 2, \cdots , n) is a symmetric polynomial with non-negative coefficients.

PROOF. Putting $f_i(x) \equiv \sum_{q=1}^{n+p} a_{iq} x^q$ $(i=1, 2, \cdots, n)$, we have

$$A_{ij} = \sum_{h=1}^{n} x_{j}^{k_{h}} \sum_{q=1}^{n+p} a_{iq} x_{h}^{q} = \sum_{h=1}^{n} x_{j}^{k_{h}} f_{i}(x_{h}),$$

so that

$$(A_{ij}) = (x_i^{\kappa_j})(f_i(x_j))$$
 $(i, j = 1, 2, \cdots, n).$

Application of Theorem 3 completes the proof.

4. THEOREM 5. If f(x) and g(x) are power series with non-negative coefficients converging in the interval $0 \le x < a$, then the expression

(7)
$$(-1)^{n-1} \det \left| 1x_i^1 \cdots x_i^{n-2} f(ux_i)g(vx_1 \cdots x_{i-1}x_{i+1} \cdots x_n) \right| / V,$$

 $i = 1, 2, \cdots, n,$

can be written as a power series in the variables $x_1, x_2, \dots, x_n, u, v$ with non-negative coefficients converging in the range

$$0 \leq x_1, x_2, \cdots, x_n < a; 0 \leq u \leq 1; 0 \leq v \leq \frac{1}{a^{n-1}}$$

PROOF. Putting

$$f(x) = \sum_{q=0}^{\infty} a_q x^q, \qquad g(x) = \sum_{m=0}^{\infty} b_m x^m, \qquad a_q \ge 0, \ b_m \ge 0,$$

then (7) can be expressed as

$$(-1)^{n-1} \sum_{q=0}^{\infty} a_{q} u^{q} | 1x_{i}^{1} \cdots x_{i}^{n-3} x_{i}^{q} (vx_{1} \cdots x_{i-1} x_{i+1} \cdots x_{n}) | /V$$

$$= (-1)^{n-1} \sum_{q=0}^{\infty} \sum_{m=0}^{\infty} a_{q} b_{m} u^{q} v^{m} | 1x_{i}^{1} \cdots x_{i}^{n-3} x_{i}^{q} (x_{1} \cdots x_{i-1} x_{i+1} \cdots x_{n})^{m} | /V$$

$$= (-1)^{n-1} \sum_{q=0}^{\infty} \sum_{m=0}^{\infty} a_{q} b_{m} u^{q} v^{m} | x_{i}^{m} x_{i}^{m+1} \cdots x_{i}^{m+n-3} x_{i}^{m+q} 1 | /V$$

$$= \sum_{q=n-2}^{\infty} \sum_{m=0}^{\infty} a_{q} b_{m} u^{q} v^{m} | 1x_{i}^{m} x_{i}^{m+1} \cdots x_{i}^{m+n-3} x_{i}^{m+q} | /V,$$

1955]

so that from Theorem 4 the correctness of this theorem follows.

REMARK. For n=3 this theorem is a result of Rosenbloom about absolutely monotonic functions [2]. (The range of u and v given there is not quite correct.)

5. THEOREM 6. Let F(x, y) be the function $\sum_{i=0}^{n+p} \sum_{j=0}^{n+p} a_{ij} x^{i}y^{i}$ $(p \ge 0)$, with the property that all determinants D of the nth order taken from the matrix $|a_{ij}|$ are non-negative. Let (x_1, x_2, \dots, x_n) and (y_1, y_2, \dots, y_n) with $x_i \ne x_j$, $y_i \ne y_j$ $(i \ne j)$ be two sets of variables.

Then the expression

(8)
$$(F(x_i, y_j))/V(x)V(y).$$

is a polynomial, symmetric in x_1, x_2, \dots, x_n as well as in y_1, y_2, \dots, y_n with non-negative coefficients.

PROOF. On account of another theorem of Garbieri [3] the expression (8) is identical with

(9)
$$(-1)^{p-1}(t_{ij}), \qquad i, j = 0, 1, \cdots, n+2p+1,$$

where

$$t_{ij} = a_{ij} (i, j = 0, 1, \dots, n + p)$$

= $\sigma'_{j-i-p-1}$ (i=0, 1, \dots, n+p, j=n+p+1, \dots, n+2p+1)

$$=\sigma_{i-j-p-1} \quad (i=n+p+1, \cdots, n+2p+1, j=0, 1, \cdots, n+2p+1),$$

where $(-1)^{j}\sigma_{j}$ and $(-1)^{j}\sigma'_{j}$ are the elementary symmetric functions of $x_{1}, x_{2}, \dots, x_{n}$ and $y_{1}, y_{2}, \dots, y_{n}$ respectively. We develop the determinant in (9) in terms of the (p+1)-line minors of the last p+1 rows. The term corresponding with the minor indicated by the column-indices $k_{1}, k_{2}, \dots, k_{p+1}$, say \mathfrak{M} , possesses the sign

$$(-1)^{(n+p+2)+(n+p+3)+\cdots+(n+2p+2)+k_1+k_2+\cdots+k_{p+1}} = (-1)^M.$$

If in \mathfrak{M} we replace each σ_j by $(-1)^j s_j$, then the new minor \mathfrak{M}' has the sign

$$(-1)^{(n-k_1+1)+(n-k_2+1)+\cdots+(n-k_p+1+1)+1+2+\cdots+p} = (-1)^N.$$

The complementary minor of \mathfrak{M} with elements a_{ij} and σ'_k , say $\overline{\mathfrak{M}}$, can be expanded in terms of the (p+1)-line minors of the last p+1 columns. The term in the expansion of $\overline{\mathfrak{M}}$ corresponding with the minor \mathfrak{N} indicated by the row-indices $q_1, q_2, \cdots, q_{p+1}$ is provided with the sign

$$(-1)^{(n+1)+(n+2)+\cdots+(n+p+1)+q_1+q_2+\cdots+q_{p+1}} = (-1)^{P}.$$

93

In \mathfrak{N} again we replace the σ' by S', and the new minor \mathfrak{N}' has the sign

$$(-1)^{(n-q_1+1)+(n-q_2+1)+\cdots+(n-q_{p+1}+1)+1+2+\cdots+p} = (-1)^{q_1}$$

Thus the determinant in (9) is the sum of terms each of which is a product of 3 determinants $\mathfrak{M}', \mathfrak{N}', D$ and the factor $(-1)^{M+N+P+Q}$. By simple calculation we see that

 $M + N + P + Q \equiv (p + 1)^2 \pmod{2}$.

As from our assumption the determinants D are non-negative, it follows that each term in the development of (9) has the positive sign, on account of $(-1)^{(p+1)+(p+1)^2} = 1$.

The application of Theorem 1 to each \mathfrak{M}' and \mathfrak{N}' completes the proof.

References

1. H. Brunn, Ein Satz über orthosymmetrische und verwandte Determinanten aus den fundamentalen symmetrischen Funktionen, Zeitschrift für Mathematik und Physik vol. 37 (1892) pp. 291-297.

2. P. C. Rosenbloom, Some properties of absolutely monotonic functions, Bull. Amer. Math. Soc. vol. 52 (1946) p. 460.

3. G. Garbieri, Nuovo teorema algebrico e sua speciale applicazione, Giornale di Mat. vol. 16 (1878) pp. 1-17, or, Sir Thomas Muir, The theory of determinants in the historical order of development, vol. III, pp. 163-165.

4. H. Naegelsbach, Ueber eine Classe symmetrischen Functionen, Sch. Prog., Zweibrücken (1871) pp. 8-11, or Muir, vol. III, pp. 144-148.

UNIVERSITY OF INDONESIA AND

TECHNISCHE HOGESCHOOL, DELFT