A NOTE ON A THEOREM OF ROTH

W. V. PARKER

In a recent paper Roth [1] proved:
Theorem 1. If A and B are $n \times n$ matrices with elements in the field F, whose characteristic polynomials are

$$
a_{0}\left(x^{2}\right)-x a_{1}\left(x^{2}\right) \text { and } \quad b_{0}\left(x^{2}\right)-x b_{1}\left(x^{2}\right)
$$

respectively, where $a_{0}(x), a_{1}(x), b_{0}(x), b_{1}(x)$ are elements in the polynomial domain, $F[x]$, of F; and if the rank of $A-B$ does not exceed unity; then the characteristic polynomial of $A B$ is

$$
(-1)^{n}\left[a_{0}(x) b_{0}(x)-x a_{1}(x) b_{1}(x)\right] .
$$

In this note the following extension of this theorem will be proved:
Theorem 2. If A and B are as given in Theorem 1 and k is any element of the field F, then the characteristic polynomial of $A B+k(A-B)$ is

$$
(-1)^{n}\left\{a_{0}(x) b_{0}(x)-x a_{1}(x) b_{1}(x)+k\left[a_{0}(x) b_{1}(x)-a_{1}(x) b_{0}(x)\right]\right\} .
$$

Use the notation of Roth and write $A-B=D=R^{T} S$ where R and S are row vectors in n-space.

Since

$$
|I x-A|=a_{0}\left(x^{2}\right)-x a_{1}\left(x^{2}\right) \text { and } \quad|I x-B|=b_{0}\left(x^{2}\right)-x b_{1}\left(x^{2}\right)
$$

we have $|I x+A|=(-1)^{n}\left[a_{0}\left(x^{2}\right)+x a_{1}\left(x^{2}\right)\right]$.
It then follows that

$$
\begin{align*}
\left|I x^{2}-A B+x(A-B)\right|= & (-1)^{n}\left\{a_{0}\left(x^{2}\right) b_{0}\left(x^{2}\right)-x^{2} a_{1}\left(x^{2}\right) b_{1}\left(x^{2}\right)\right. \tag{1}\\
& \left.+x\left[a_{1}\left(x^{2}\right) b_{0}\left(x^{2}\right)-a_{0}\left(x^{2}\right) b_{1}\left(x^{2}\right)\right]\right\} .
\end{align*}
$$

From Lemma II of Roth's paper, it follows that
(2) $\left|I x^{2}-A B+x(A-B)\right|=\left|I x^{2}-A B\right|+x S\left[\operatorname{adj}\left(I x^{2}-A B\right)\right] R^{T}$.

The right members of (1) and (2) are identically equal and each is written as the sum of an even polynomial and an odd polynomial. Equating corresponding parts gives

$$
\begin{equation*}
\left|I x^{2}-A B\right|=(-1)^{n}\left[a_{0}\left(x^{2}\right) b_{0}\left(x^{2}\right)-x^{2} a_{1}\left(x^{2}\right) b_{1}\left(x^{2}\right)\right] \tag{3}
\end{equation*}
$$

and
Received by the editors April 12, 1954.
(4) $S\left[\operatorname{adj}\left(I x^{2}-A B\right)\right] R^{T}=(-1)^{n}\left[a_{1}\left(x^{2}\right) b_{0}\left(x^{2}\right)-a_{0}\left(x^{2}\right) b_{1}\left(x^{2}\right)\right]$.

Also from Lemma II (Roth), it follows that

$$
\begin{align*}
\left|I x^{2}-[A B+k(A-B)]\right|= & \left|I x^{2}-A B\right| \tag{5}\\
& -k S\left[\operatorname{adj}\left(I x^{2}-A B\right)\right] R^{T} .
\end{align*}
$$

Replacing x^{2} by y and substituting from (3) and (4) into (5) gives
(6) $|I y-[A B+k(A-B)]|=(-1)^{n}\left\{a_{0}(y) b_{0}(y)-y a_{1}(y) b_{1}(y)\right.$

$$
\left.+k\left[a_{0}(y) b_{1}(y)-a_{1}(y) b_{0}(y)\right]\right\}
$$

This completes the proof of the theorem.
The characteristic polynomials of many other functions of A and B may now be written at once. Since $(A-B)^{u}=\left(S R^{T}\right)^{u-1}(A-B)$ for every positive integer u, the characteristic polynomial of $A B$ $+c(A-B)^{u}$ may be obtained from (6) by taking $k=c\left(S R^{T}\right)^{u-1}$. In particular for $c=1$ and $u=2$ this becomes $A B+(A-B)^{2}=A^{2}-B A$ $+B^{2}$. Thus (6) may be used to write the characteristic polynomial of $A^{2}-B A+B^{2}$.

Also Lemma II gives the characteristic polynomial of $A-B$ to be $x^{n}-S R^{T} x^{n-1}$. Hence, the matrix $R^{T} S$ is nilpotent if and only if the vectors R and S are orthogonal.

Reference

W. E. Roth, On the characteristic polynomial of the product of two matrices, Proc. Amer. Math. Soc. vol. 5 (1954) pp. 1-3.

Alabama Polytechnic Institute

