ment a which suffice. Let F = B(t), B any field of characteristic two and t transcendental over B. If f(t) denotes an arbitrary element of B(t), then define α by $f(t)\alpha = f(1/t)$, and let a = t + 1/t.

BIBLIOGRAPHY

- 1. R. H. Bruck and Erwin Kleinfeld, The structure of alternative division rings, Proc. Amer. Math. Soc. vol. 2 (1951) pp. 878-890.
- 2. Marshall Hall, Projective planes, Trans. Amer. Math. Soc. vol. 54 (1943) pp. 229-277
- 3. L. A. Skornyakov, Right alternative fields, Bull. Acad. Sci. URSS. Sér. Math. vol. 15 (1951) pp. 177-184.

THE UNIVERSITY OF OREGON

ON THE CHARACTERISTIC FUNCTION OF A MATRIX PRODUCT

L. S. GODDARD

In a recent note [1], Roth has proved this result.

THEOREM 1. Let A and B be $n \times n$ matrices, with elements in a field F, and let

$$|xI - A| = a_0(x^2) - xa_1(x^2), \qquad |xI - B| = b_0(x^2) - xb_1(x^2),$$

where a_0 , a_1 , b_0 , and b_1 are elements in the polynomial ring F[x]. If the rank of A-B is not greater than unity, then

$$|xI - AB| = (-)^n [a_0(x)b_0(x) - xa_1(x)b_1(x)].$$

In his proof, which is essentially a verification, Roth derives some interesting but unnecessary information. Here I present a proof which is shorter, direct, and leads naturally to a more general result involving three matrices.

The essential step in my proof is the observation that if A is a nonsingular matrix and M is a matrix of rank 1, then

$$|A + M| = |A| + \sum \Delta_i$$

where $\sum \Delta_i$ is a sum of n determinants, each consisting of n-1 columns of A and one column of M. This follows from the fact that, M being of rank 1, any two columns of M are linearly dependent.

Received by the editors June 25, 1954.

For the case at hand we have

$$|xI - A| |xI + B| = |(xI - A)(xI + B)|$$
$$= |x^2I - AB - x(A - B)|$$

and this determinant is equal to $|x^2I - AB|$ if A - B has zero rank, while if A - B has rank 1, we have

$$|x^2I - AB - x(A - B)| = |x^2I - AB| - x \sum \Delta_i$$

where each determinant Δ_i has n-1 columns chosen from x^2I-AB and one column from A-B. It is observed that the terms of $x \sum \Delta_i$ contain only *odd* powers of x. Thus, in either case, $|x^2I-AB|$ is equal to the *even* part of |xI-A||xI+B|. Now

$$|xI - A| |xI + B| = (-)^n [a_0(x^2) - xa_1(x^2)] [b_0(x^2) + xb_1(x^2)],$$

and the even part is $(-)^n [a_0(x^2)b_0(x^2) - x^2a_1(x^2)b_1(x^2)]$. Hence, writing $y = x^2$, we have

$$|yI - AB| = (-)^n [a_0(y)b_0(y) - ya_1(y)b_1(y)],$$

and this is Roth's result.

Before extending this result we prove the

LEMMA. If H and K are nonzero square matrices, such that xH-K is of rank 1, for x indeterminate over the field F, then either

(i) H = uh', K = uk',

or

(ii) H = uh', K = vh',

where u, v, h, k are column vectors. Conversely, if H and K satisfy (i) and (ii) then xH-K is of rank 1.

PROOF. Since xH-K is of rank 1 for all x, it follows that H and K are each of rank 1 and hence are of the form

$$H = uh', K = vk',$$

where u, v, h, k are column vectors. If we now equate to zero all the two-rowed minors of xH-K, it is easily found that either u=v or h=k, and this proves the lemma. The converse is obviously true.

From this lemma we proceed to

THEOREM 2. Let A_1 , A_2 , and A_3 be $n \times n$ matrices, such that

$$|xI - A_i| = a_{0i}(x^3) + xa_{1i}(x^3) + x^2a_{2i}(x^3)$$
 $(i = 1, 2, 3)$

and write $H = A_1 + A_2 + A_3$, $K = A_1A_2 + A_1A_3 + A_2A_3$. If H and K satisfy the lemma, or if H = K = 0, then

$$|xI - A_1A_2A_3| = a_{01}a_{02}a_{03} + x[a_{11}(a_{02}a_{23} + a_{03}a_{22}) + a_{12}(a_{01}a_{23} + a_{03}a_{21}) + a_{13}(a_{01}a_{22} + a_{02}a_{21})] + x^2a_{21}a_{22}a_{23},$$

where $a_{ij} = a_{ij}(x)$.

PROOF. We have

$$(xI - A_1)(xI - A_2)(xI - A_3) = x^3I - A_1A_2A_3 - x(xH - K).$$

If H = K = 0 we have

$$E = |xI - A_1| |xI - A_2| |xI - A_3| = |x^3I - A_1A_2A_3|.$$

If xH-K is of rank 1 for all x, we have

$$E = |x^3I - A_1A_2A_3| - x\sum \Delta_i,$$

where each determinant Δ_i , since it consists of n-1 columns of $x^3I - A_1A_2A_3$ and 1 column of xH - K, expands into a polynomial each term of which involves x to the power 3k or 3k+1 for some integer k. Now $x \sum \Delta_i$ is a polynomial, each term of which involves x to a power 3k+1 or 3k+2. Thus, in either case, $|x^3I - A_1A_2A_3|$ is equal to the sum of the terms of $|xI - A_1| |xI - A_2| |xI - A_3|$ which involve powers of x^3 . If we pick out these terms and replace x^3 by x the result follows.

REFERENCE

W. E. Roth, On the characteristic polynomial of the product of two matrices, Proc. Amer. Math. Soc. vol. 5 (1954) pp. 1-3.

KING'S COLLEGE, ABERDEEN