
SEPARATION PROPERTIES OF CONVEX CONES1

V. L. KLEE, JR.

1. Introduction. If A and B are convex subsets of a topological

linear space P, we say that A and B can be separated by a hyperplane

provided P admits a continuous linear functional /, not identically

zero, such that sup^/^infB/. Except in rather special cases, the

known separation theorems require that A and B have no common

point, and thus fail to cover the interesting case in which A and B are

closed convex cones whose intersection and common vertex is the

origin <p. This case is discussed in the present note. Our main results,

extending theorems of Aronszajn [l ] and Tagamlitzki [6], are proved

in §2; §3 contains examples showing that these results cannot be

substantially improved.

In addition to standard notation and terminology, we employ the

following: A <p-cone in a topological linear space is a closed convex

cone having vertex <p; for a 0-cone A, A' will denote the linear sub-

space A(~\— A. Set-theoretic sum and difference are indicated by KJ

and \ respectively, + and — being reserved for the linear operations.

For points x and y of a linear space, [x, y] = {ta + (l — t)y: Ogtg 1},

]x, y[={tx+(l-t)y: 0<*<l}, etc.

2. The separation theorems. Our main results, (2.5) and (2.7), will

be based on several propositions about 0-cones. The first of these can

be proved by modification of an argument in [S, p. 452] (see also

[4, p. 78]):
(2.1) If A and B are <p-cones in a topological linear space, A is

locally compact, and A(~\B = {<p}, then A—B is closed.

(2.2) If A is a <p-cone in a locally convex topological linear space E

and Q is a nonempty compact convex subset of A which misses A', then

E admits a continuous linear functional f such that / ^ 0 on A and / > 0

on Q.
Proof. Let 11 be the family of all convex open sets UE)q> such that

Q+U misses A', and for each PGL> let Ay be the convex hull of

(A\A')\J(Q-\-U). An elementary argument (similar to that of [5,

p. 459]) shows that for some VElV, <p(£Av. Since the interior of

Av is nonempty, it then follows from the basic separation theorem
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([4, p. 69] and [5, p. 456]) that E admits a continuous linear func-

tional/, not identically zero, such that/=0 on Ay. It is easy to verify

that/=0 on A and/>0 on Q.
(2.3) If A is a locally compact <j)-cone in a locally convex topological

linear space E, then there are locally compact q>-cones A\ and A2 in E

such that A{ =Ai, A{ = {<p} = A-i.C\A2, and Ai+A2 = A.
Proof. A' is a locally compact linear subspace of E, hence is finite-

dimensional, and thus admits a complementary closed linear subspace

L in E. With .4i=.4' and A2 = AC\L, it can be verified that the sets

Ai have the stated properties.

The proof of the next proposition is due to J. Dieudonne and the

author, independently. Dieudonne also observed that it could be

used to prove the theorem (2.5).

(2.4) If A2 is a locally compact <p-cone in a locally convex topological

linear space E, and A2' = \<p\; then there is a compact convex set

JCE\{<f>} such that A2= [0, 00 [/.

Proof. By local convexity of E and local compactness of A2, there

is a convex subset K of E such that q> is interior to K and A2C\K is

compact. Let F be the intersection of A2 with the boundary of K and

let / be the closed convex hull of F. Then clearly A2 = [0, 00 [/, and

compactness of / follows from a result of Bourbaki [4, p. 80]. Now

if <pEJ, then <f> is an extreme point of J, for JEA and A'= {</>}.

Then from a theorem of Milman [4, p. 84] it follows that <pEF, a con-

tradiction completing the proof.

We remark that (2.3) and (2.4) have valid converses which do not

require local convexity of E.

A very special case of the theorem below was given by Tagamlitzki

[6].

(2.5) Theorem. Suppose A and B are <j>-cones in a locally convex

topological linear space E, A is locally compact, and AC\B = {<£}. Then

E admits a continuous linear functional f such that f <0 on A\A', f = 0

on A'KJB', andf^O on B\B'.

Proof. By (2.1), B\A is closed, and hence is a 0-cone. Let Ai and

A2 be as in (2.3) and let J be as in (2.4). Then (B-A)'=B'-A'
= B' — Ai, so that if —J intersects (B—A)' it must be true that B'

intersects J+Ai. Since AC\B ={</>} and -7+-4iC-42, this is impos-

sible, and it follows that —J misses (B—A)'. Thus, by (2.2), £ admits

a continuous linear functional/such that/=0 on B—A and/>0 on

— J. It is easy to verify that/ has the desired properties.

Now if, in (2.5), B is also locally compact, then E admits a con-

tinuous linear functional g such that g<0 on B\B', g = 0 on B'\JA',
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and g^O on A\A';f—g is then a linear functional <0 on A\A',=0

on A'\JB', and >0 on B\B'. This stronger type of separation is also

available in another setting, which we now discuss. The lemma

needed is

(2.6) Suppose E is a complete metric linear space, C is a closed

convex subset of E, <£G C, and xa is a sequence of points of C. Then there

are a point p of C and a sequence ta of positive numbers such that for

each i, [p — tiXi, p-\-tiXi](ZC. If Fis a set of linearfunctionals on E such

that every member of F which is constant on \xi, x2, • • • } is constant on

C, thenfpQi] infcf, supcf[for eachf^F.
Proof. Let p be a complete invariant metric on P. For each i,

choose /,• such that 0<U<2~i~1>p((p, ttXi). Then the series £" t,Xi

converges to a point pG.C, and for each i it is true that [p — UXi,

p-\-tiXi\CC. Now consider an arbitrary /GP. If / is constant on

{xi, x2, • • ■ }, then of course/pG] infc/, sUpc/[. If for some i,

fxi>0, then intc f^f(p-Xi) <fp<f(p+x{) gsupc f. A similar state-
ment holds if/x,<0 for some i, so the proof is complete.

(2.7) Theorem. Suppose E is a separable normed linear space, A

and B are <p-cones in E, A is locally compact, and AC\B= {<t>\- Then

E admits a continuous linear functional f such that /<0 on -4V4',

/=0 on A'\JB', andf>0 in B\B'.

Proof. Let D=B-A. By (2.1), D is a 0-cone. Let C be the set of
all gGP* such that g ^ 0 on D. C is a closed convex subset of P*, and

by [2, p. 124], C is separable in the w*-topology. Hence by (2.6) there

is an/GC such that/xG] inf„gc gx, sup„ec gx[ for each xGP- For

x(E:D\D' we have 'm{ac=c gx^O and (by (2.2)) sup„Gc gx>0, whence

/x>0. Thus/is a continuous linear functional on E such that/^0 on

D and/>0 on D\D'. Since P' = (P-^1)'=P'-^', it is easy to verify

that / has the desired properties.

If Z, is a linear space and p is a positively homogeneous subadditive

functional on L, then, by the Hahn-Banach theorem, L admits a

linear functional fgp. Aronszajn [l], showed that if px+p( — x)

= nx>0 for each xGP\{<£}, and L is separable under the norm n,

then P admits a linear functional / such that fx<px whenever

xGL\{<A}- Bonsall [3] showed by an example that the assumption

of separability cannot be discarded. Aronszajn's result follows easily

from (2.7), by application of (2.7) to the space P XR. (For the type of
argument needed, see [5, p. 462].)

3. Remarks and examples. Let P be either the hyper-Hilbert space

/2Ni or the complete separable locally convex metric linear space (s) of
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all sequences of real numbers [2, p. 10], and let B be the set of all

non-negative members of E. Then B is a <jb-cone and B' = {<£}, but E

does not admit any linear functional/such that/>0 on B\{<p}. This

shows that E must be taken normed and separable in (2.7), and helps

to clarify the role played by local compactness in (2.5).

The separation theorems (2.5) and (2.7) assert more than the pos-

sibility of separating A and B by a hyperplane, for in each case we

have not merely/=0 on B but also/<0 on B\B'. We shall now

develop an example which shows that without local compactness of

at least one of the $-cones involved, even the weakest sort of separa-

tion may not be possible.

A subset of a linear space is said to be linearly bounded provided its

intersection with every line is contained in some bounded subset of

the line. For later use, we mention the following fact, whose proof is

left to the reader:

(3.1) If E is a topological linear space, M is a hyperplane in E\{<j>},

and J is a convex subset of M, then [0, °o [/ is closed if and only if J

is closed and linearly bounded.

Now if E is an arbitrary nonreflexive separable Banach space, then

E contains a disjoint pair of bounded closed convex sets which cannot

be separated by any hyperplane [5, p. 881 ]; application of (3.1)

produces in £ a pair of 0-cones A and B which cannot be separated

by any hyperplane, even though A(~\B={<p\. In reflexive spaces,

on the other hand, disjoint bounded closed convex sets can always

be separated by a hyperplane. Nevertheless, we have

(3.2) Hilbert space H contains a disjoint pair of linearly bounded

closed convex sets which cannot be separated by any hyperplane.

Proof. We may regard 77 as 77i X772, where each 77",- is a sequential

Hilbert space. Let Q be a compact convex subset of 772 which contains

the origin <p2, but cannot be supported by a hyperplane at <j>2. Let p

be a point of 772 such that ]0, <x> [p misses — Q. Let the points 5,- of

77i be given by 6V=1 and 6V' = 0 for i^j, and let aa and ba be se-

quencies of positive numbers, with ba—>0. (A further restriction on

aa will be added later.) Let C= {(x, <j>i): xEHi and x'EtO, a,-] for

each i\ and let D be the closed convex hull of {(a„5„, q+bnp): n a

positive integer, qEQ}- It can be verified that C and D are linearly

bounded closed convex subsets of 77 = 77iX772.

Now suppose / is a continuous linear functional on H such that

supc/^inffl/. Then for each n, f(a„8„, <p2)^f(anon, q+bnp) for all

qEQ, whence f(<pu g) =0 for all qEQ- Since <p2 is a nonsupport point

of Q in H2, it follows thatf(<j>u y) =0 for all yEH2. But then/fa^, <f>2)
g/(c,-fi,-, <p2) for all i and j, and it follows that / must be identically
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zero. We still must show that, with appropriate specification of aa,

C misses D.

Consider an arbitrary point (x, 0a) of C. If this is also a point of

D, there must be positive numbers tj1 (1 g i, j < °°) and points q, of

Q such that w„—>x and va—*b2, where for each j it is true that

£<"i </~l, «j= £<"i */«<8<, and fy = (£li h'btiP+Qs- Since
fl«—xfo, (? 1S compact, and ]0, oo [£+0; misses <p2, it is necessary that

limj-,.0 £f"i //6,=0. Since each bi is positive, that implies lim,-..,, tf

= 0 for each i; and with m„—>x, this implies x=0i. Thus with no fur-

ther restriction on the sequences aa and ba, it must be true that

CC\DCZ. {(0i, 02)}. Now the square of the distance from u, to <pi is

£i-i (*/a<)!> and for this to be less than 1 it must be true that

tji<acl for all i. Since £4li t/=l for each i, then if a„ is any se-

quence of positive numbers such that £" a,-1 < 1, the resultant sets

C and D have no points in common. This completes the proof.

From (3.1) and (3.2) we now have

(3.3) Hilbert space contains a pair of <p-cones A and B which cannot

be separated by a hyperplane, even though A' =B' =AC\B= {<p}.

A slightly more careful argument would have shown that in (3.3),

A and B can be so constructed that x-y > 0 whenever

{x,y} CAVB\{4>}.

In closing, a word about the role played in separation theorems by

the assumption that the sets are disjoint. The basic separation theo-

rem [4, p. 69; 5, p. 456] asserts that if C and D are convex and the

interior of C is nonempty and misses D, then C and D can be sepa-

rated by a hyperplane. Here CC\D need not be empty. But compact-

ness will not suffice for theorems of this type, as is seen from easily

constructed examples of compact convex sets C and D in Hilbert

space which cannot be separated by a hyperplane, even though, in

the first case, D is merely an extreme point of C, and, in the second

case, D is a line segment such that CC\D is a point of C at which C

can be supported by a hyperplane. Relevance of these examples to

the case of 0-cones A and B, and the condition that Af~\B = {<j>}, can

be seen in terms of (3.1). Only in finite-dimensional spaces is the

situation especially simple, as described in

(3.4) Suppose E is a finite-dimensional topological linear space and

Ai and A2 are convex subsets of E whose union is not contained in any

hyperplane. For each i, let A,° be the interior of Ait relative to the small-

est linear manifold containing it. Then Ai and A2 can be separated

by a hyperplane if and only if Ai° misses /4j°.
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A NOTE ON HAAR MEASURE1

HARRY F. DAVIS

We prove a direct sum theorem for Haar measure which is a

generalization, to arbitrary locally compact topological groups, of a

theorem for Lie groups due to Mostow [3]. It is well known that the

Haar integral on a compact group may be obtained by a simple

averaging process. On a vector group, the Haar integral is essentially

the Lebesgue integral. On a discrete group it is summation. Our

theorem asserts that the formation of a Haar integral on any locally

compact group must be a composite of these three processes. Hence

no locally compact group exists for which the Haar integral must be

constructed in an essentially more novel manner.

Theorem. Given any locally compact topological group G, there exists

a compact subgroup K, a subspace E which is homeomorphic to an n-

dimensional Euclidean space, and a discrete subset D, such that the

mapping 9(a, b, c) =abc is a homeomorphism of the Cartesian product

DXEXK with G, and carries the product measure moXmEXmn: over

to mo- Here mo is discrete measure in D, me is Lebesgue measure in

E relative to suitable coordinates, mx is Haar measure in K, and ma

is left Haar measure in G. (Note that E need not be a subgroup.)
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