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1. Introduction. A ring, P, is said to be right alternative if yx-x

—yxx = 0 is an identical relation in P. Right alternative division

rings arise quite naturally in the study of certain projective and

affine planes. More specifically, the division rings of geometric sig-

nificance are those with the right inverse property. However, a divi-

sion ring, P, with unit element, has the right inverse property if

and only if w(xy ■ x) — (wx ■ y)x is identically zero in P, and in this

case R is right alternative. On the other hand, alternative division

rings automatically have the right inverse property.

In a recent paper, L. A. Skornyakov [3]1 has shown that right

alternative division rings of characteristic not two are alternative. He

first proves that such rings satisfy the identity

(1.1) w(xy-x) = (wx- y)x

for all w, x, y. R. H. Bruck has an example of a right alternative divi-

sion ring, P, of characteristic two, which is not alternative. P, how-

ever, does not satisfy (1.1).

We prove the following theorem: Let Rbea right alternative division

ring of characteristic two. Then R is alternative if and only if R satisfies

(1.1). As a geometric application of our result and that of Skorn-

yakov, we note that if R is a division ring with the right inverse

property and if it' is the affine plane with coordinates from R (in

the sense of Marshall Hall [2]), then either iv' is Desarguesian or R

is a Cayley-Dickson algebra over its centre.

In an appendix, we include Bruck's example of a class of right

alternative division rings of characteristic two which are not alterna-

tive. This has not heretofore been published, and we include it here

at his request.

2. Preliminary definitions and results. In any ring R the associator

(x, y, z) and the commutator (x, y) are defined by

(2.1) (x, y, z) = xyz — x-yz,        (x, y) = xy — yx.

Then R is right alternative if and only if, for all x, y in R, (y, x, x) =0,

and R is alternative if and only if we also have (x, x, y) =0. In order
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to state hypotheses as succinctly as possible, we adopt the following

definitions. A right alternative ring, 72, is said to be strongly right

alternative if (1.1) holds in 7?. If such is the case, we shall say that 7?

is SRA. Further, when 7? is SRA and a division ring, we shall say

that 7? is SRAD. Finally, we shall use the letters u, v, w, x, y, z for

arbitrary elements of 7?.

Lemma 2.1. If Ris SRA, the following identities hold in R:

(2.2) (w, x, xy) = (w, x, y)x,

(2.3) ((w, x, y), x, y) = (w, x, y)(y, x),

(2.4) (wx, y, z) = w(x, y, z) + (w, y, z)x - (w, x, (y, z)).

Lemma 2.2. Let R be SRAD. Then R has a unit element, 1; 7? has

the right inverse property, and also

(2.5) ((y, z), y, z) = 0.

Proofs of Lemmas 2.1 and 2.2 may be found in [3].

3. A partition of 7?. For fixed /, g in R, define the mapping x (of

7? into 7?) by xx — (x,f, g). Then (2.4) may be written

(3.1) (xy)7r = x-yx + xx-y - (x,y, (f, g)).

Theorem 3.1. Let R be SRAD. Let f and g be two elements of R such

that d = (g, /)t^0. Let N and S be defined by A7= [m£7?|mtt = 0],
S=[5e7e|57r = 5<f]. Then R = N+S and NS = S.

Proof. From (2.3), xxx=xx-d so that X7r is in S. Also dx = 0 by

(2.5) so d, and hence d~l, are in N. Set q = xx-d~1. Then qx = xx = qd

and so q is in 5. If y=x — q, yx = 0, y is in N, R = N-\-S. Clearly,

zEN and zES implies z = 0. For any nEN, sES, we have m5tt

= nsd so NSCZS. For »y*0, define m by nm=s. Then m(m'+s') =s,

or nn'ES. Hence m'=0, NS = S.

Corollary 3.1. 7/7? has characteristic two, S2 = 0 or N.

Proof. For any nonzero s, s' of 5, we have

(3.2) ss'x = sds' + ss'd.

Since the right-hand side of (3.2) is in S, we apply x using (3.1) and

also using the definition of S. This gives sd-ds'+sds'd = 0 so that

(d, S) =0. Then (3.2) shows that ss' is in N. The obvious procedure

yields 52 = A7, if 5^0.

4. The main theorem. We begin with a definition. Let 7? be a right
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alternative ring, and let M = [wGP| (R, R, m) =0]. Then M will be

called the right nucleus of P. We prove

Lemma 4.1. Let R be a not associative strongly right alternative ring

without divisors of zero. Let M be the right nucleus of R. Then (R,M) =0.

Proof. Since A/VP, select hGR, h<£M, m, m'EM. Then (P, h, m)

= 0 so that 0 = (uv, h, m) = (u, v, (h, m)) and (h, m)(z_M. But also

(R, h, hm)—0 so that (h, hm)€.M. Now (hm, h)=h(m, h) and this

implies that h^M, a contradiction, unless (m, h)=0. Then

0 = (hm, m') =h(m, m') so that (m, m') =0 and (P, M) =0.

Corollary 4.1. (P, u, v) =0 implies (u, v) =0.

Theorem 4.1. P«2 R be a not alternative strongly right alternative

division ring of characteristic two. Then R = N+S, where N and S are

defined as in Theorem 3.1. Moreover, (N, R, P)=0, NS = SN = S,

S2 = Ni = Ni fNi R-) =0| and N is afield.

Proof. There exist in P two elements a, b such that (a, a, 6)^0.

We can assume (a, b)?*0. Indeed, if (a, b) =0, then (a, ab) = (a, a, &)

5^0 and also (a, a, a&)r^0. We can thus apply Theorem 3.1 with

f=a,g = b. This gives R = N+S, NS = S and S2 = N. That (N, R, R)
= 0 may be quoted verbatim from [3, Lemma 4, p. 180]. The obvious

procedure again yields N2 = N. For arbitrary nonzero n and s,

0 = (ns, d) = (n, d)s so (d, «)=0. Now sn-ir = s-dn, and since sdn is

in 5, applying it to this element in two ways gives (s ■ dn)d = s(d ■ dn).

But (d, N) =0 so that (5, a", n) =0. Hence 5n-7r=5wd so that SNC.S.

The usual trick gives SN = 5.

Clearly (x, n, s)E:N. Hence 0 = ((x, n, s), n, s) = (x, n, s)(n, s) and

thus (AT, S) =0. Finally, for arbitrary n, n'GN, (n, n') = (ss', n') =0

so (N, N)=0. This proves the theorem.

For some fixed nonzero sG-S, we write R = N+Ns. Then, with

x=ni-\-n2s and y=ntJrnis, we have

(4.1) xy = »i«3 + n2n$ + («r»4 + n2ni)s,

where we have put ssn — nd and n2(n$) =n2n$.

Lemma 4.2. IfR = N+Ns, then (s, s, N) =0.

Proof. Using (4.1) and the properties of N, we compute q = s(xy -x)

+ (sx-y)x and obtain the relation

(4.2) q = (mni)9 + «i«40 + n^ntf)  + (ra2«i0)0.

But by hypothesis a = 0. Hence the right-hand side of (4.2) vanishes
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for all m in N. Put Mi = 1 in (4.2) and get the relations

(4.3). ni(n2d)t+ (nln&B = 0,

(4.4) (miM4)0 + Miw40 = 0.

Applying (4.4) to (4.3) gives

(4.5) M4(»20)2 + W2W = 0.

In (4.5) put m2=m« = 1 and obtain (10)2 = l-02. Again, in (4.5) set

»4 = 1.  This gives M20=M2-10.  But  ld=s2EN,  so that M20 = 5-5m2

= 52m2- This proves the lemma since m2 is arbitrary.

It is now possible to prove the main theorem.

Theorem 4.2. Let R be a right alternative division ring of character-

istic two. Then R is alternative if and only ifw(xy ■ x) — (wx ■ y)x is identi-

cally zero in R.

Proof, (i) The necessity is well known. (See [l, p. 880]). (ii) We

assume the given relation and further suppose that 7? is not alterna-

tive. Then R = N+Ns, N a field, commutative with 7?, and (s, s, N)

= 0. Therefore (x, y) = (ni+n2s, n3+nis) = (nts, m45)=m4[(m2, s)s

+ (s, 5, m2)]=0. Thus 7? is commutative, hence alternative, and this

is a contradiction. Hence 7? is alternative anyway and the proof is

complete.

Appendix. We here indicate Bruck's method of constructing right

alternative division rings of characteristic two which are not alter-

native. Let F be a field of characteristic two, somewhat restricted by

Theorem I below. Let 7? be the set of all couples (/, g),f, gEF. Equal-

ity and addition in 7? shall be componentwise, and multiplication

will be defined by

(1) (f,g)(h,k) = (fh + g-kd,fk + gk)

where 6 is an additive endomorphism of F. With these definitions,

it is easy to verify that 7? is a right alternative ring.

Lemma I. Let R be defined as above. R is a division ring if and only if,

for eachfEF, the mapping p.(f), defined by

(2) x-p(f) = xd + xf2, allxEP,

is one-to-one of F upon F.

Proof, (i) Suppose (f, g)(h, k) = (p, q). This implies

(3) fh + g-kO = p,       fk + gh = q.
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If h, k, p, q are given, (3) implies that/ and g will exist uniquely if

and only if

(4) h2+kkd^0.

(ii) Let/, g, p, q be given. We can assume/ ?*0 j^g; multiply the first

of equations (3) by g, the second by/, and add the resulting equations

to obtain f2k+g2kd=fq-\-gp. Multiplying both sides of this last

equation by (g2)-1, we get

(5) k6 + r2k = s

where r=fg~l and 5 = (/g+gp)(g2)-1. With p, defined by (2), (5) be-

comes k-p,(r) =5 so k exists uniquely if and only if p, is 1-1. In such

a case, h will be unique by (3). Finally, an easy computation shows

that if p(f) is 1-1, then (4) holds.

Lemma II. Let R be defined as above. Then R satisfies (1.1) if and

only if fO=gf, some fixed gEF, allfEF.

The proof is the same as that of Lemma 4.2.

Theorem I. Let F be any field of characteristic two for which there

exists an automorphism a of order 2 and an element aEF such that

aa=a and a is not a square in F. Then, the additive endomorphism 6

of F, defined by xd=xa+ax, all xEF, has the property that, for every

fixed fEF, the mapping p.(f), defined by (2), is 1-1 of F upon F.

Proof. For / and g any elements of F, we have to show the exist-

ence of one and only one x in F such that

(6) (a+f)x+ xa = g.

Since a2 = 1, we apply a to (6) and obtain

(7) x + (a + pa) • xa = get.

Regarding (6) and (7) as simultaneous equations in x, xa we get

(8) Dx= (a+fa)g + ga,

(9) D = a(f + fa)2 + (1 + a + f-fa)2.

Now D = 0 implies that a is a square, so D is not zero and (8) deter-

mines x uniquely. Since, from (9), Da = D, we find that D-xa

=f+(o+/2) get. Thus the x determined by (8) satisfies (6) and the

proof is complete. Note that 0, as defined by the theorem, does not

satisfy the condition of Lemma II so that R is not alternative.

Finally, we show that fields F, having the properties required by

the theorem, actually exist, and exhibit an a and a nonsquare ele-
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ment a which suffice. Let F=B(t), B any field of characteristic two

and t transcendental over B. If f(t) denotes an arbitrary element of

B(t), then define a by f(t)a=f(l/t), and let a = t + l/t.
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ON THE CHARACTERISTIC FUNCTION OF A
MATRIX PRODUCT

L. S. GODDARD

In a recent note [l], Roth has proved this result.

Theorem 1. Let A and B be nXn matrices, with elements in afield

F, and let

\xl - A\= o0(x2) - xai(x2), | xl - B |   = bo(x2) - xh(x2),

where ao, ai, bo, and bi are elements in the polynomial ring F[x]. If the

rank of A—B is not greater than unity, then

| xl - AB\   = (-)n[a0(x)bo(x) - xai(x)bx(x)].

In his proof, which is essentially a verification, Roth derives some

interesting but unnecessary information. Here I present a proof which

is shorter, direct, and leads naturally to a more general result involv-

ing three matrices.

The essential step in my proof is the observation that if ^4 is a

nonsingular matrix and M is a matrix of rank 1, then

\a + m\ = \a\ +£a,-

where T^A< is a sum of n determinants, each consisting oi n — 1

columns of A and one column of M. This follows from the fact that,

M being of rank 1, any two columns of M are linearly dependent.

Received by the editors June 25, 1954.


