RIGHT ALTERNATIVE DIVISION RINGS OF
CHARACTERISTIC TWO

R. L. SAN SOUCIE

1. Introduction. A ring, R, is said to be right alternative if yx-x
—y-xx=0 is an identical relation in R. Right alternative division
rings arise quite naturally in the study of certain projective and
affine planes. More specifically, the division rings of geometric sig-
nificance are those with the right inverse property. However, a divi-
sion ring, R, with unit element, has the right inverse property if
and only if w(xy-x) —(wx-y)x is identically zero in R, and in this
case R is right alternative. On the other hand, alternative division
rings automatically have the right inverse property.

In a recent paper, L. A. Skornyakov [3]! has shown that right
alternative division rings of characteristic not two are alternative. He
first proves that such rings satisfy the identity

(1.1) w(xy x) = (wz-y)x

for all w, x, y. R. H. Bruck has an example of a right alternative divi-
sion ring, R, of characteristic two, which is not alternative. R, how-
ever, does not satisfy (1.1).

We prove the following theorem: Let R be a right alternative division
ring of characteristic two. Then R is alternative if and only if R satisfies
(1.1). As a geometric application of our result and that of Skorn-
yakov, we note that if R is a division ring with the right inverse
property and if n’ is the affine plane with coordinates from R (in
the sense of Marshall Hall [2]), then either 7’ is Desarguesian or R
is a Cayley-Dickson algebra over its centre.

In an appendix, we include Bruck’s example of a class of right
alternative division rings of characteristic two which are not alterna-
tive. This has not heretofore been published, and we include it here
at his request.

2. Preliminary definitions and results. In any ring R the associator
(x, ¥, 2) and the commutator (x, ¥) are defined by

(2'1) (x» Y Z) = xy-z3— %Yz (xo )') = xy — yx.

Then R is right alternative if and only if, for all x, y in R, (y, %, x) =0,
and R is alternative if and only if we also have (x, x, y) =0. In order
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to state hypotheses as succinctly as possible, we adopt the following
definitions. A right alternative ring, R, is said to be strongly right
alternative if (1.1) holds in R. If such is the case, we shall say that R
is SRA. Further, when R is SRA and a division ring, we shall say
that R is SRAD. Finally, we shall use the letters %, v, w, x, ¥, 2 for
arbitrary elements of R.

LemMMA 2.1. If R is SRA, the following identities hold in R:

(2.2) (w, x, xy) = (w, =, )%,
(2.3) ((w, 2, y), 2, 9) = (w, 2, y)(5, %),
(24) (wx» ¥ z) = w(x’ ¥ Z) + (w» » z)x - (w’ x, (yv Z)).

LeEMMA 2.2. Let R be SRAD. Then R has a unit element, 1; R has
the right inverse property, and also

(2.5) (9 2), 3,2) = 0.
Proofs of Lemmas 2.1 and 2.2 may be found in [3].

3. A partition of R. For fixed f, g in R, define the mapping 7 (of
R into R) by xmr =(x, f, g). Then (2.4) may be written

(3'1) (x}’)f = x-ymw + xrey — (xr b g (fr g))

THEOREM 3.1. Let R be SRAD. Let f and g be two elements of R such
that d=(g, f)#0. Let N and S be defined by N=[nER|nr=0],
S=[sER|sr=sd]. Then R=N+S and NS=S.

ProoF. From (2.3), xr-m=xw-d so that xr is in S. Also dr =0 by
(2.5) so d, and hence d-!, are in N. Set ¢=xn-d~'. Then gr=x7=gqd
and so ¢ isin S. If y=x—g, yr=0, y is in N, R=N+4S. Clearly,
z2&EN and 2zE€S implies 2=0. For any nEN, s&€S, we have ns 7
=ns-d so NSCS. For n#0, define m by nm =s. Then n(n’+s’) =s,
or nn’' €S. Hence ' =0, NS=3S.

CoOROLLARY 3.1. If R has characteristic two, S?=0 or N.
ProoF. For any nonzero s, s’ of S, we have
(3.2) ss’-w = s-ds’ + s-s'd.

Since the right-hand side of (3.2) is in .S, we apply 7 using (3.1) and
also using the definition of S. This gives sd-ds’+sd-s'"d =0 so that
(d, S)=0. Then (3.2) shows that ss’ is in N. The obvious procedure
yields S?=N, if S#0.

4. The main theorem. We begin with a definition. Let R be a right
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alternative ring, and let M= [mER| (R, R, m)=0]. Then M will be
called the right nucleus of R. We prove

LEMMA 4.1. Let R be a not associative strongly right alternative ring
without divisors of zero. Let M be the right nucleus of R. Then (R,M) =0.

ProOF. Since M#R, select kER, héEM, m, m' EM. Then (R, k, m)
=0 so that 0= (uv, h, m)=(u, v, (k, m)) and (k, m) EM. But also
(R, k, km) =0 so that (k, hm)E M. Now (hm, h) =h(m, k) and this
implies that AEM, a contradiction, unless (m, k) =0. Then
0=(hm, m’') =h(m, m') so that (m, m') =0 and (R, M) =0.

COROLLARY 4.1. (R, u, v) =0 implies (u, v) =0.

THEOREM 4.1. Let R be a not alternative strongly right alternative
division ring of characteristic two. Then R=N+S, where N and S are
defined as in Theorem 3.1. Moreover, (N, R, R)=0, NS=SN=3S,
S?=N?=N, (N, R)=0, and N is a field.

Proor. There exist in R two elements @, b such that (a, a, b) 0.
We can assume (a, b) #0. Indeed, if (a, b) =0, then (a, ab) =(a, a, b)
#0 and also (a, @, ab) #0. We can thus apply Theorem 3.1 with
f=a, g=>. This gives R=N+S, NS=S and S?=N. That (N, R, R)
=0 may be quoted verbatim from [3, Lemma 4, p. 180]. The obvious
procedure again yields N*=N. For arbitrary nonzero » and s,
0=(ms, d)=(n, d)s so (d, n) =0. Now sn-w=s-dn, and since s-dn is
in S, applying = to this element in two ways gives (s-dn)d =s(d-dn).
But (d, N) =0 so that (s, d, n) =0. Hence sn -7 =sn-d so that SNCS.
The usual trick gives SN =S.

Clearly (x, n, s)EN. Hence 0=((x, #, s), n, s) =(x, n, s)(n, s) and
thus (N, S) =0. Finally, for arbitrary n, n’ €N, (n, n') =(ss', n’) =0
so (N, N)=0. This proves the theorem.

For some fixed nonzero s&S, we write R=N+Ns. Then, with
x=n1+n,s and y=mn3+n,s, we have

4.1) 2y = mng + nand + (mny + nang)s,
where we have put s-sn=n0 and n:(n0) =n.n0.
LeMmMA 4.2. If R=N+Ns, then (s, s, N)=0.
Proor. Using (4.1) and the properties of N, we compute ¢=s(xy-x)
+(sx-y)x and obtain the relation
4.2) g = (mn0 + nind + )’ + (1m0,
But by hypothesis ¢=0. Hence the right-hand side of (4.2) vanishes
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for all # in N. Put #,=1 in (4.2) and get the relations

4.3) nu(md)’ + (nnd)8 = 0,
4.4) (n:m)ﬂ + n:mo =0.
Applying (4.4) to (4.3) gives

4.5) m(nzl))2 + n:nﬁ’ = 0.

In (4.5) put #n.=n,=1 and obtain (16)2=1-0% Again, in (4.5) set
ny=1. This gives n.0=mn,-10. But 10=5*€EN, so that nfb=s-sn,
=s%n,. This proves the lemma since #; is arbitrary.

It is now possible to prove the main theorem.

THEOREM 4.2. Let R be a right alternative division ring of character-
istic two. Then R is alternative if and only if w(xy-x) — (wx - y)x is identi-
cally zero in R.

ProoF. (i) The necessity is well known. (See [1, p. 880]). (ii) We
assume the given relation and further suppose that R is not alterna-
tive. Then R=N+Ns, N a field, commutative with R, and (s, s, N)
=0. Therefore (x, ¥)=(mi+nss, nstns)=(ns, nis)=ni[(ns, s)s
+(s, s, m2) | =0. Thus R is commutative, hence alternative, and this
is a contradiction. Hence R is alternative anyway and the proof is
complete.

Appendix. We here indicate Bruck’s method of constructing right
alternative division rings of characteristic two which are not alter-
native. Let F be a field of characteristic two, somewhat restricted by
Theorem I below. Let R be the set of all couples (f, g), f, g&E F. Equal-
ity and addition in R shall be componentwise, and multiplication
will be defined by

6] (f, 8)(h, k) = (fh + g-¥8, fk + gh)

where 0 is an additive endomorphism of F. With these definitions,
it is easy to verify that R is a right alternative ring.

LEMMA 1. Let R be defined as above. R is a division ring if and only if,
for each fEF, the mapping u(f), defined by

(2) x-u(f) = o + xf?, al x €F,
is one-to-one of F upon F.

Proor. (i) Suppose (f, g)(k, k) =(p, ¢). This implies
©)] Jht gk =1p,  JEk+gh=q
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If &, k, p, ¢ are given, (3) implies that f and g will exist uniquely if
and only if

@) B+ kRO 5 0,

(ii) Let f, g, p, ¢ be given. We can assume f#03>g; multiply the first
of equations (3) by g, the second by f, and add the resulting equations
to obtain f*k-+g?-kf=fq+gp. Multiplying both sides of this last
equation by (g?)!, we get

(5) K+ rk=s

where r=fg~! and s=(fg+gp)(g?~1. With u defined by (2), (5) be-
comes k-u(r) =s so k exists uniquely if and only if u is 1-1. In such
a case, b will be unique by (3). Finally, an easy computation shows
that if u(f) is 1-1, then (4) holds.

LeEMMA II. Let R be defined as above. Then R satisfies (1.1) if and
only if f0=gf, some fixed g€ F, all fEF.

The proof is the same as that of Lemma 4.2.

THEOREM 1. Let F be any field of characteristic two for which there
exists an automorphism o of order 2 and an element a S F such that
aa=a and a is not a square in F. Then, the additive endomorphism 6
of F, defined by x0 =xa-+ax, all x€F, has the property that, for every
fixed fEF, the mapping u(f), defined by (2), is 1-1 of F upon F.

Proor. For f and g any elements of F, we have to show the exist-
ence of one and only one x in F such that

(6) (e + )z + za =g

Since a?=1, we apply « to (6) and obtain

(7N 2+ (a + fla) - xa = ga.

Regarding (6) and (7) as simultaneous equations in x, xa we get
(8 D-x = (a + fla)g + ge,

9 D=o(f+ fa)>+ (1 +a+ ffa)

Now D =0 implies that a is a square, so D is not zero and (8) deter-
mines x¥ uniquely. Since, from (9), Da=D, we find that D.xa
=g+ (a+f?) -ga. Thus the x determined by (8) satisfies (6) and the
proof is complete. Note that 6, as defined by the theorem, does not
satisfy the condition of Lemma II so that R is not alternative.
Finally, we show that fields F, having the properties required by
the theorem, actually exist, and exhibit an « and a nonsquare ele-
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ment ¢ which suffice. Let F=B(t), B any field of characteristic two
and ¢ transcendental over B. If f(¢) denotes an arbitrary element of
B(?), then define « by f(t)a=f(1/t), and let a=t41/t.
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THE UNIVERSITY OF OREGON

ON THE CHARACTERISTIC FUNCTION OF A
MATRIX PRODUCT

L. S. GODDARD
In a recent note [1], Roth has proved this result.

THEOREM 1. Let A and B be n Xn matrices, with elements in a field
F, and let

l xI — Al = ao(x?) — xa,(x?), l xI — Bl = ho(x2) — xb:(x?),

where o, @y, bo, and by are elements in the polynomial ring F[x]. If the
rank of A — B is not greater than unity, then

| «I — AB| = (—=)"[ao(2)bo(2) — was(x)bs(x)].

In his proof, which is essentially a verification, Roth derives some
interesting but unnecessary information. Here I present a proof which
is shorter, direct, and leads naturally to a more general result involv-
ing three matrices.

The essential step in my proof is the observation that if 4 is a
nonsingular matrix and M is a matrix of rank 1, then

|4+ M| = |4] + 2 A

where D A; is a sum of # determinants, each consisting of n—1
columns of 4 and one column of M. This follows from the fact that,
M being of rank 1, any two columns of M are linearly dependent.
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