THE SPLITTING OF CERTAIN SOLVABLE GROUPS1

EUGENE SCHENKMAN

Let G be a finite group. We shall designate the commutator subgroup of G by $G^2 = [G, G]$; this is the group generated by all commutators $[g, h] = ghg^{-1}h^{-1}$. Inductively $G^n = [G^{n-1}, G]$ is defined to be the group generated by commutators of elements of G with elements of G^{n-1} ; and G^* will designate $\bigcap_{n=1}^{\infty} G^n$. It should be recalled that G is nilpotent if $G^* = E$, the subgroup consisting of the identity element, or equivalently, if G is the direct product of p-groups.

Our object here is to show that when G^* is Abelian then there is a nilpotent group X so that $G = XG^*$ where $X \cap G^* = E$. If there are two such splittings of G into XG^* and YG^* then Y and X are conjugates by an element of G^* . If x is in the center of X then x does not commute with any of its conjugates. As a consequence of the properties of the splitting it will follow that if G has no center and G^* is Abelian, then both G and its group of automorphisms are contained in the holomorph of G^* .

We shall also give an example to show that the hypothesis that G^* be nilpotent instead of Abelian is insufficient to insure a splitting of G in this fashion.

The splitting of G. In order to show the existence of the splitting mentioned above we first prove the following fact.

LEMMA. If G/G^* is cyclic, that is, if G is generated by G^* and an element x, and if G^* is Abelian, then every element of G^* is of the form [x, k] for some $k \in G^*$. Thus the map sending k into [x, k] is a 1-1 map of G^* onto itself.

PROOF. To prove this we shall use the following easily verified rules for commutators (cf. [2, p. 60]):

$$[a, bc] = [a, b][a, c]^b$$
 where g^b denotes bgb^{-1} , $[ab, c] = [b, c]^a[a, c]$,

and

$$[a, b] = [b, a]^{-1}$$
.

Presented to the Society, September 3, 1954; received by the editors July 21, 1954

¹ This research was supported by the U. S. Air Force under contract number AF18(600)-790 monitored by the Office of Scientific Research.

Then remembering that G^* is an Abelian normal subgroup and that $G^2 = G^*$ we have for g, h in G^*

$$[x, gh] = [x, g][x, h]^{g} = [x, g][x, h]$$

and therefore also

(2)
$$[x, g^{-1}] = [x, g]^{-1} = [g, x]$$
 since $e = [x, g^{-1}g] = [x, g^{-1}][x, g]$.

Now the elements of G are of the form gx^r , hx^s for r and s integers and hence $[gx^r, hx^s] = [gx^r, h][gx^r, x^s] = [x^r, h][g, x^s]$. But $[x^r, h] = [x^{r-1}, h]^x[x, h] = [x^{r-1}, h^x][x, h]$ and therefore by an induction argument $[x^r, h] = [x, h]$ for some h in G^* . Also $[g, x^s] = [x^s, g]^{-1}$ and therefore $[g, x^s] = [x, g]$ for g in G^* . It follows that every commutator and hence in view of (1) every element of G^2 is of the form [x, k] for some k in G^* as the lemma asserts. That the map sending k into [x, k] is a 1-1 map of G^* onto itself follows readily from this.

COROLLARY. If H is a normal subgroup of G contained in G^* then [x, H] = H where [x, H] denotes the set of commutators [x, h] for $h \in H$. If K is the group generated by x and H then K is not nilpotent and in fact $K^* = H$.

We can now prove the splitting theorem.

THEOREM 1. If G is a finite group so that G^* is Abelian then G contains a proper subgroup X such that $G^* \cap X = E$, $G = G^*X$, and consequently X is isomorphic to G/G^* and is nilpotent.

PROOF. G^* is normal in G. We shall first consider the case where G^* is minimal normal in G, that is G^* does not properly contain any normal subgroup of G other than E. Since G is not nilpotent the Φ subgroup of G (cf. [2, p. 114]) does not contain G^2 . Therefore there is a minimal set of generators of G, g_1, \dots, g_k , where at least one of the generators, say g_k , is in G^2 . Then g_1, \dots, g_{k-1} generate a proper subgroup K of G. Since G/G^* is nilpotent, g_1G^* , \dots , $g_{k-1}G^*$ generate G/G^* (cf. [2, p. 114] again) and $G = G^*K$. Then $K \cap G^*$ is normal in K and in G^* , hence in G. Since K is a proper subgroup, $K \cap G^*$ must be E and the theorem is proved when G^* is minimal normal.

If G^* is not minimal normal then we are going to show the existence of a subgroup H properly contained in G^* such that [G, H] = H. This is clearly true if G^* has order not a power of a prime; hence suppose G^* has order a power of a prime p. Since G/G^* is a direct product of p-groups, G has a normal non-nilpotent (cf. [1, pp. 98-102]) subgroup Q containing G^* so that Q/G^* has order a power of a prime $q \neq p$. Hence there is an element of q power order not in the

centralizer Z of G^* . Since Z is normal in G and G/Z is the direct product of p-groups, there is a central element of G/Z of order a power of q and consequently a normal subgroup K of G generated by Z and an element x of order a power of q. x does not commute with all the elements of G^* ; therefore K is not nilpotent and we have $E \neq K^* \subset G^*$, K^* normal in G. The elements of K are of the form x^rz for r integral and z in Z. Therefore if $g \in G^*$, $[x^rz, g] = [x^r, g]$ and we see that if L is the group generated by x and K^* , then $L^* = K^*$. Now we can apply the corollary to the lemma to see that if H is any normal subgroup contained in K^* then [x, H] = H.

Now if $K^* \neq G^*$, then K^* is the desired subgroup such that $[G, K^*] = K^*$. If $K^* = G^*$ then any normal subgroup H of G contained in G^* has the property that [G, H] = H since [x, H] = H. In either event we can proceed by induction to finish the proof of the theorem. For let $H \neq E$ be properly contained in G^* such that [G, H] = H. Then by an induction argument G has a proper subgroup K so that G/H = K/H $\cdot G^*/H$ or $G = KG^*$ with $K \cap G^* \subset H$. Then [K, H] = H since [G, H] = H and $K^* \subset G^* \cap K \subset H$; hence $K^* = H \neq E$ and by the induction argument $K = XK^*$ where $X \cap K^* = E$. Finally $G = KG^* = XG^*$ and $X \cap G^* \subset K \cap G^* \subset H$; hence $X \cap G^* \subset H \cap X = K^* \cap X = E$ and the theorem is proved.

REMARK. We shall give here an example to show that the above type of splitting is in general impossible when G^* is nilpotent even if G/G^* is Abelian. For p a prime not 2 let H be a group of order p^4 , generated by elements a, b, and c; a and b of order p, c of order p^2 , and $c^p = [a, b]$, [c, a] = [c, b] = e, the identity. Let b be an automorphism of b sending a into a^{-1} , b into b^{-1} , and b into b and let b be the holomorph of b with b of order b. Then b consists of the group of order b generated by b and b. Since b is of order b and b and b into the impossibility of a splitting as in the theorem is clear.

On the conjugacy of the complements of G^* . If G = AB where A and B are subgroups whose intersection is the identity we shall call A a complement of B in G. Our main result here is then the following.

THEOREM 2. If G^* is Abelian and if X and Y are two complements of G^* , then for some $h \in G^*$, $X = hYh^{-1}$.

PROOF. First suppose that G^* is a minimal normal subgroup of G; then G^* has order a power of some prime p. Let x be of order q prime to p in the center of X. If x is not in the centralizer of G^* then x and G^* generate a normal subgroup R of G which is not nilpotent and therefore $R^* = G^*$ by the minimality condition on G^* . It follows from

the corollary to the lemma of the last section that every element h of G^* is of the form $xgx^{-1}g^{-1}$ for some g in G^* .

Now there is a $y\neq e$ in $R\cap Y$ such that $y=x^{-1}h$ and therefore $y=gx^{-1}g^{-1}$. Suppose $Y\neq gXg^{-1}$; then since $G=G^*(gXg^{-1})$ there is a k in Y so that $k=hgmg^{-1}$ for some h in G^* , $h\neq e$, and m in X. But then since y is a conjugate of x^{-1} , x in the center of X, it follows that $[k, y]=[hgmg^{-1}, y]=[h, y]$; hence $[[k, y] \cdot \cdot \cdot y]=[[h, y] \cdot \cdot \cdot y]\neq e$ since $[y, G^*]=G^*$. But this is a contradiction of the nilpotency of Y and we conclude that $Y=gXg^{-1}$ when x is not in the centralizer of G^* .

If x is in the centralizer of G^* then x is in the center of G and since x is in every Sylow q group of G, x is in Y. Then by an induction argument the theorem is true in G/(x) and from this the theorem follows for G when G^* is minimal normal.

The general case now follows easily from this. As in the proof of Theorem 1 there is an x and a normal subgroup H of G properly contained in G^* such that [x, H] = H. Without loss in generality x can be taken in X. By an induction argument, $Y/H = (gH)X/H(gH)^{-1}$ for some gH in G^*/H and hence if g is an element of gH then gXg^{-1} is a complement of K^* in the proper subgroup K generated by Y and H. But $[K, H] = H = K^*$ and by the induction assumption again there is an $h \in H$ so that $h(gXg^{-1})h^{-1} = Y$. This completes the proof of the theorem.

REMARK. If h is in G^* then either h is in the center of G or $hXh^{-1} \neq X$. For if $hXh^{-1} = X$ then X is normal in the group generated by X and h; so also is (h). Hence $[x, h] \subset X \cap (h) = E$ and h is in the center of G.

REMARK. If x is in the center of X then x does not commute with any of its conjugates. For if $y \neq x$ is a conjugate of x, then it is clear that $y = hxh^{-1}$ for some $h \in G^*$. If x and y commute, then x commutes with $[h, x] \in G^*$ where $[h, x] \neq e$ since $y \neq x$. Hence $[x, G^*] \neq G^*$. Let K be the group generated by x and G^* ; then K^* is properly contained in G^* and, being normal in G, K contains a normal subgroup H of G so that either [H, x] = H or [H, x] = E. Then by an induction argument assuming the statement true in G/H, we see that since $y = hxh^{-1}$ then h must be in H and consequently [h, x] is in H. Since $[h, x] \neq e$ and commutes with x it is not possible that [H, x] = H. On the other hand [H, x] cannot be E for then [h, x] would be e. We thus get a contradiction by assuming that x can commute with one of its conjugates.

On the group of automorphisms of G when G^* is Abelian and G has no center.

THEOREM 3. If G is a group with no center and G^* is Abelian, then both G and A, the group of automorphisms of G, are contained in the holomorph R of G^* . Furthermore if D and F are complements of G^* in A, then there is an $h \in G^*$ so that $hDh^{-1} = F$.

PROOF. That G is in R follows from Theorem 1; for $G = G^*X$ where G^* is normal in G and $G \cap X = E$.

Now G^* is a characteristic subgroup of G and therefore every automorphism of G maps G^* into itself. Suppose m is an automorphism of G which commutes with all the elements of G^* . Let E be the holomorph of G and E and let E be the centralizer of E in E. Then E is normal in E and hence for every E in E in E in view of Theorem 2 there is an E in E in E so that E in the identity is, E in the identity E in E is in E i

We now show that if D and F are two complements of G^* in A then there is an $h \in G^*$ so that $F = hDh^{-1}$. It is clear that $D \cap G$ is normal in D and is a complement of G^* in G; hence there is an $h \in G^*$ so that $h(D \cap G)h^{-1} = F \cap G$. But $F \cap G$ determines F completely; for if $F \cap G$ were normal in F and also in $F' \neq F$, then $F \cap G$ would be normal in the group generated by F and F' which must necessarily intersect G^* in a subgroup $Z \neq E$. But then $[Z, F \cap G] \cap G$ and $[Z, F \cap G] \cap G^*$, whence it follows that $[Z, F \cap G] \cap G$ and $[Z, F \cap G] \cap G^*$, whence it follows that $[Z, F \cap G] \cap G$ determines F completely, and then $[Z, F \cap G] \cap G$. This completes the proof of the theorem.

BIBLIOGRAPHY

- 1. H. Fitting, Beiträge zur Theorie der Gruppen endlicher Ordnung, Jber. Deutschen Math. Verein. vol. 48 (1938) pp. 77-141.
 - 2. H. Zassenhaus, Theory of groups, translated, Chelsea, New York, 1949.

LOUISIANA STATE UNIVERSITY AND
THE INSTITUTE FOR ADVANCED STUDY