THE SPLITTING OF CERTAIN SOLVABLE GROUPS!
EUGENE SCHENKMAN

Let G be a finite group. We shall designate the commutator sub-
group of G by G*=[G, G]; this is the group generated by all com-
mutators [g, k] =ghg~'h~'. Inductively G*= [G"!, G] is defined to
be the group generated by commutators of elements of G with ele-
ments of G*1; and G* will designate N,.,G" It should be recalled
that G is nilpotent if G* =E, the subgroup consisting of the identity
element, or equivalently, if G is the direct product of p-groups.

Our object here is to show that when G* is Abelian then there is a
nilpotent group X so that G=XG* where XNG*=E. If there are
two such splittings of G into XG* and YG* then Y and X are con-
jugates by an element of G*. If x is in the center of X then x does not
commute with any of its conjugates. As a consequence of the prop-
erties of the splitting it will follow that if G has no center and G* is
Abelian, then both G and its group of automorphisms are contained
in the holomorph of G*.

We shall also give an example to show that the hypothesis that
G* be nilpotent instead of Abelian is insufficient to insure a splitting
of G in this fashion.

The splitting of G. In order to show the existence of the splitting
mentioned above we first prove the following fact.

LeMMA. If G/G* is cyclic, that is, if G is generated by G* and an
element x, and if G* is Abelian, then every element of G* is of the form
[x, k] for some kEG*. Thus the map sending k into [x, k] isa 1-1 map
of G* onto itself.

Proor. To prove this we shall use the following easily verified rules
for commutators (cf. [2, p. 60]):
[a, bc] = [a, b][a, c]> where gb denotes bgb?,
[ab, ¢] = [b, c]o[a, c],
and
[e, 8] = [5, o]
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Then remembering that G* is an Abelian normal subgroup and that
G?=G* we have for g, k in G*

(1) [x’ gh] = [x: g] [x’ h]' = [x» g] [x' h]

and therefore also

(2) [xv g—l] = [x' g]—l = [g, x] since ¢ = [xv g—lg] = [x: g—x] [x’ g]°

Now the elements of G are of the form gx*, hx* for r and s integers and
hence [gxr, hxt]=[gxr, R][gxr, x*]=[x", h][g, »*]. But [x, k]
=[x, k]=[x, B]=[x—1, h*][x, k] and therefore by an induction
argument [x7, k] = [, ] for some % in G*. Also [g, x*] = [x*, g]-* and
therefore [g, x*] = [x, g] for g in G*. It follows that every commutator
and hence in view of (1) every element of G? is of the form [x, ] for
some k in G* as the lemma asserts. That the map sending % into
[x, ] is a 1-1 map of G* onto itself follows readily from this.

CoOROLLARY. If H is a normal subgroup of G contained in G* then
[x, H)=H where [x, H] denotes the set of commutators [x, h] for hEH.
If K is the group generated by x and H then K is not nilpotent and in
fact K*=H.

We can now prove the splitting theorem.

THEOREM 1. If G is a finite group so that G* is Abelian then G con-
tains a proper subgroup X such that G¥*NX =E, G=G*X, and con-
sequently X is isomorphic to G/G* and is nilpotent.

ProOOF. G* is normal in G. We shall first consider the case where
G* is minimal normal in G, that is G* does not properly contain any
normal subgroup of G other than E. Since G is not nilpotent the &
subgroup of G (cf. [2, p. 114]) does not contain G2 Therefore there

is a minimal set of generators of G, g1, « « *, g, where at least one of
the generators, say gx, is in G2 Then gy, - - -, gx_1 generate a proper
subgroup K of G. Since G/G* is nilpotent, giG*, - - -, gx1G* gener-

ate G/G* (cf. [2, p. 114] again) and G=G*K. Then KNG* is normal
in K and in G*, hence in G. Since K is a proper subgroup, KNG*
must be E and the theorem is proved when G* is minimal normal.
If G* is not minimal normal then we are going to show the exist-
ence of a subgroup H properly contained in G* such that [G, H]=H.
This is clearly true if G* has order not a power of a prime; hence
suppose G* has order a power of a prime p. Since G/G* is a direct
product of p-groups, G has a normal non-nilpotent (cf. [1, pp. 98-
102]) subgroup Q containing G* so that Q/G* has order a power of a
prime g>p. Hence there is an element of ¢ power order not in the
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centralizer Z of G*. Since Z is normal in G and G/Z is the direct
product of p-groups, there is a central element of G/Z of order a
power of ¢ and consequently a normal subgroup K of G generated
by Z and an element x of order a power of ¢. x does not commute
with all the elements of G*; therefore K is not nilpotent and we have
E#K*CG*, K* normal in G. The elements of K are of the form
x7z for r integral and z in Z. Therefore if g€G*, [x"z, g] =[x", g] and
we see that if L is the group generated by x and K*, then L*=K*.
Now we can apply the corollary to the lemma to see that if H is
any normal subgroup contained in K* then [x, H]=H.

Now if K*>G*, then K* is the desired subgroup such that [G, K*]
=K* If K*=G* then any normal subgroup H of G contained in G*
has the property that [G, H]=H since [x, H]=H. In either event we
can proceed by induction to finish the proof of the theorem. For let
H#E be properly contained in G* such that [G, H]=H. Then by an
induction argument G has a proper subgroup K so that G/H=K/H
-G*/H or G=KG* with KNG*CH. Then [K, H]=H since [G, H]
=H and K*CG*N\KCH; hence K¥*=H>E and by the induction
argument K =XK* where XNK*=E. Finally G=KG*=XG* and
XNG*CKNG*CH; hence XNG*CHNX=K*N\X=E and the
theorem is proved.

REMARK. We shall give here an example to show that the above
type of splitting is in general impossible when G* is nilpotent even if
G/G* is Abelian. For p a prime not 2 let H be a group of order #*,
generated by elements @, b, and ¢; @ and b of order p, ¢ of order p?, and
c*=|a, b], [c, a] =[c, b] =e, the identity. Let & be an automorphism
of H sending a into a~?, b into b~!, and ¢ into ¢; and let G be the
holomorph of H with % of order 2p%. Then G* consists of the group of
order p* generated by a and b. Since ¢ is of order p? and ¢*= [a, b]
the impossibility of a splitting as in the theorem is clear.

On the conjugacy of the complements of G*. If G = A4 B where 4 and
B are subgroups whose intersection is the identity we shall call 4 a
complement of B in G. Our main result here is then the following.

THEOREM 2. If G* is Abelian and if X and Y are two complements
of G*, then for some h&G*, X =hYh™L.

Proor. First suppose that G* is a minimal normal subgroup of G;
then G* has order a power of some prime p. Let x be of order ¢ prime
to ¢ in the center of X. If x is not in the centralizer of G* then x and
G* generate a normal subgroup R of G which is not nilpotent and
therefore R* =G* by the minimality condition on G*. It follows from
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the corollary to the lemma of the last section that every element &
of G* is of the form xgx—'g~! for some g in G*.

Now there is a yse in RNY such that y=x"'% and therefore
y=gx~'g~l. Suppose YV#gXg!; then since G=G*(gXg™!) there is a
kin Y so that k=hgmg—! for some k in G*, ke, and m in X. But then
since y is a conjugate of 1, x in the center of X, it follows that [k, y]
= [kgmg=*, y]= [k, y]; hence [[k, ] - - - y]=[[k, ] - - - y]5#e since
[y, G*] =G*. But this is a contradiction of the nilpotency of ¥ and we
conclude that Y=gXg~! when x is not in the centralizer of G*.

If x is in the centralizer of G* then x is in the center of G and since
x is in every Sylow ¢ group of G, x is in Y. Then by an induction
argument the theorem is true in G/(x) and from this the theorem
follows for G when G* is minimal normal.

The general case now follows easily from this. As in the proof of
Theorem 1 there is an x and a normal subgroup H of G properly con-
tained in G* such that [x, H]=H. Without loss in generality x can
be taken in X. By an induction argument, Y/H=(gH)X/H(gH)!
for some gH in G*/H and hence if g is an element of gH then gXg—!
is a complement of K* in the proper subgroup K generated by ¥ and
H. But [K, H|=H=K* and by the induction assumption again
there is an k&€ H so that h(gXg—')h~'=Y. This completes the proof
of the theorem.

REMARK. If & is in G* then either % is in the center of G or A Xh™!
#X. For if B Xh—'=X then X is normal in the group generated by
X and k; so also is (k). Hence [x, h]CXN(h)=E and k& is in the
center of G.

REMARK. If x is in the center of X then x does not commute with
any of its conjugates. For if y>x is a conjugate of x, then it is clear
that y =hxh~! for some hEG*. If x and y commute, then x commutes
with [k, x] EG* where [k, x]5e since y>x. Hence [x, G*]#G*. Let
K be the group generated by x and G*; then K* is properly contained
in G* and, being normal in G, K contains a normal subgroup H of
G so that either [H, x]=H or [H, x]=E. Then by an induction
argument assuming the statement true in G/H, we see that since
y=hxh~! then k must be in H and consequently [, x] is in H. Since
[, x]54e and commutes with x it is not possible that [H, x]=H. On
the other hand [H, x] cannot be E for then [k, x] would be e. We
thus get a contradiction by assuming that x can commute with one
of its conjugates.

On the group of automorphisms of G when G* is Abelian and G has
no center.
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THEOREM 3. If G is a group with no center and G* is Abelian, then
both G and A, the group of automorphisms of G, are contained in the
holomorph R of G*. Furthermore if D and F are complements of G* in
A, then there is an h&G* so that hDh—'=F.

ProoF. That G is in R follows from Theorem 1; for G=G*X where
G* is normal in G and GNX =E.

Now G* is a characteristic subgroup of G and therefore every auto-
morphism of G maps G* into itself. Suppose m is an automorphism of
G which commutes with all the elements of G*. Let L be the holomorph
of G and m and let Z be the centralizer of G* in L. Then Z is normal in
L and hence for every hEG*, [mh, G]CZNG=G*. In view of Theo-
rem 2 there is an ko in G* so that mh, maps X into itself; that is,
[mhe, X]CX. Therefore [mho, X]|CXNG*=E and mh, commutes
with every element of X as well as of G*; that is, mh, is the identity
automorphism in G or m is the same as the inner automorphism
determined by hg!. It follows that 4/G* is isomorphic to a subgroup
M of automorphisms of G*, M containing X as a normal subgroup.
Then N, the holomorph of M with G* contains a copy of G and the
centralizer of this copy of G is E. Then since N and A4 are both
groups of automorphisms of G having the same order, 4 is isomorphic
to N and hence 4 is a subgroup of R as the theorem asserts.

We now show that if D and F are two complements of G* in 4
then there is an AEG* so that F=hDh™!. It is clear that DN\G is
normal in D and is a complement of G* in G; hence there is an
hEG* so that A(DNG)h—'=FNG. But FNG determines F com-
pletely; for if FIN\G were normal in F and also in F'# F, then FN\G
would be normal in the group generated by F and F’ which must
necessarily intersect G* in a subgroup Z#E. But then [Z, FN\G]
C(FNG) and [Z, FNG]CG*, whence it follows that [Z, FN\G]=E
and G has a nontrivial center contrary to hypothesis. It follows that
FNG determines F completely, and then ADA™! must be F. This
completes the proof of the theorem.
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