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Let G be a finite group. We shall designate the commutator sub-

group of G by G2= [G, G]; this is the group generated by all com-

mutators [g, h]=ghg~lh~1. Inductively G"=[Gn~~1, G] is defined to

be the group generated by commutators of elements of G with ele-

ments of GB_1; and G* will designate HiT-i^"- It should be recalled

that G is nilpotent if G* =P, the subgroup consisting of the identity

element, or equivalently, if G is the direct product of p-groups.

Our object here is to show that when G* is Abelian then there is a

nilpotent group X so that G = XG* where X(~\G* =E. If there are

two such splittings of G into XG* and YG* then Y and X are con-

jugates by an element of G*. If x is in the center of X then x does not

commute with any of its conjugates. As a consequence of the prop-

erties of the splitting it will follow that if G has no center and G* is

Abelian, then both G and its group of automorphisms are contained

in the holomorph of G*.

We shall also give an example to show that the hypothesis that

G* be nilpotent instead of Abelian is insufficient to insure a splitting

of G in this fashion.

The splitting of G. In order to show the existence of the splitting

mentioned above we first prove the following fact.

Lemma. If G/G* is cyclic, that is, if G is generated by G* and an

element x, and if G* is Abelian, then every element of G* is of the form

[x, k] for some k^G*. Thus the map sending k into [x, k] is a 1-1 map

of G* onto itself.

Proof. To prove this we shall use the following easily verified rules

for commutators (cf. [2, p. 60]):

[a, be] = [a, b] [a, c]b     where gb denotes bgb-1,

[ab, c] = [b, c]a[a, c],

and

[a, b] = [b, a]-1.
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Then remembering that G* is an Abelian normal subgroup and that

G2 = G* we have for g, h in G*

(1) [x,gh]= [x,g][x,h]°= [x,g][x,h]

and therefore also

(2) [x, g"1] = [x, g]-1 = [g, x] since e = [x, g-^] = [x, g-1] [x, g].

Now the elements of G are of the form gxr, hx' for r and 5 integers and

hence [gxr, hx']=[gxr, h][gxr, x*]=[xr, h][g, x*]. But [xr, h]

= [xr_1, fe]x[x, /f]=[xr_1, hx][x, h] and therefore by an induction

argument [xr, h] = [x, h] for some h~ in G*. Also [g, x'] = [x', g]-1 and

therefore [g, x*] = [x, f ] for g in G*. It follows that every commutator

and hence in view of (1) every element of G2 is of the form [x, k] for

some k in G* as the lemma asserts. That the map sending k into

[x, k] is a 1-1 map of G* onto itself follows readily from this.

Corollary. If H is a normal subgroup of G contained in G* then

[x, H] =H where [x, 77] denotes the set of commutators [x, h]for hEH.

If K is the group generated by x and H then K is not nilpotent and in

factK*=H.

We can now prove the splitting theorem.

Theorem 1. If G is a finite group so that G* is Abelian then G con-

tains a proper subgroup X such that G*C\X = E, G = G*X, and con-

sequently X is isomorphic to G/G* and is nilpotent.

Proof. G* is normal in G. We shall first consider the case where

G* is minimal normal in G, that is G* does not properly contain any

normal subgroup of G other than E. Since G is not nilpotent the «$

subgroup of G (cf. [2, p. 114]) does not contain G2. Therefore there

is a minimal set of generators of G, gi, • • • , g*, where at least one of

the generators, say g*, is in G2. Then gi, • • • , g*_i generate a proper

subgroup K of G. Since G/G* is nilpotent, g\G*, • • • , g*_iG* gener-

ate G/G* (cf. [2, p. 114] again) and G = G*K. Then RT\G* is normal

in K and in G*, hence in G. Since K is a proper subgroup, KC\G*

must be E and the theorem is proved when G* is minimal normal.

If G* is not minimal normal then we are going to show the exist-

ence of a subgroup H properly contained in G* such that [G, H] =77.

This is clearly true if G* has order not a power of a prime; hence

suppose G* has order a power of a prime p. Since G/G* is a direct

product of p-groups, G has a normal non-nilpotent (cf. [l, pp. 98-

102]) subgroup Q containing G* so that Q/G* has order a power of a

prime q^p. Hence there is an element of q power order not in the
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centralizer Z of G*. Since Z is normal in G and G/Z is the direct

product of />-groups, there is a central element of G/Z of order a

power of q and consequently a normal subgroup K of G generated

by Z and an element # of order a power of q. x does not commute

with all the elements of G*; therefore K is not nilpotent and we have

Et*K*CG*, K* normal in G. The elements of K are of the form

xrz for r integral and z in Z. Therefore if g€zG*, [xrz, g] = [xT, g] and

we see, that if P is the group generated by x and K*, then L* = K*.

Now we can apply the corollary to the lemma to see that if H is

any normal subgroup contained in K* then [x, H] =H.

Now if K*?*G*, then K* is the desired subgroup such that [G, K*]

= K*. If P*=G* then any normal subgroup H oi G contained in G*

has the property that [G, H] =Hsince [x, H] =H. In either event we

can proceed by induction to finish the proof of the theorem. For let

Ht^E be properly contained in G* such that [G, H] =H. Then by an

induction argument G has a proper subgroup K so that G/H = K/H

■G*/H or G=KG* with KC\G*CH. Then [P, Jf ] =P since [G, Pf]
= Pf and K*CG*r\KCH; hence K*=H^E and by the induction
argument K=XK* where AY\P*=P. Finally G=KG*=XG* and

Xr\G*CKnG*CH; hence Xr\G*CHr\X = K*f\X = E and the
theorem is proved.

Remark. We shall give here an example to show that the above

type of splitting is in general impossible when G* is nilpotent even if

G/G* is Abelian. For p a prime not 2 let H be a group of order p*,

generated by elements a, b, and c; a and b of order p, c of order p2, and

cp=[a, b], [c, a] = [c, 6] =e, the identity. Let h be an automorphism

of H sending a into a-1, b into 6_1, and c into c; and let G be the

holomorph of H with h of order 2/>4. Then G* consists of the group of

order p3 generated by a and b. Since c is of order £2 and cp= [a, 6]

the impossibility of a splitting as in the theorem is clear.

On the conjugacy of the complements of G*. UG = AB where A and

B are subgroups whose intersection is the identity we shall call A a

complement of B in G. Our main result here is then the following.

Theorem 2. If G* is Abelian and if X and Y are two complements

of G*, then for some hE:G*, X = hYh~1.

Proof. First suppose that G* is a minimal normal subgroup of G;

then G* has order a power of some prime p. Let x be of order q prime

to p in the center of X. If x is not in the centralizer of G* then x and

G* generate a normal subgroup R of G which is not nilpotent and

therefore R* = G* by the minimality condition on G*. It follows from
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the corollary to the lemma of the last section that every element h

of G* is of the form xgx_1g~l for some g in G*.

Now there is a y^Ae in RC\Y such that y=x~lh and therefore

y=gx~1g~1. Suppose Y^gXg-1; then since G = G*(gXg~1) there is a

k in Fso that k = hgmg~l for some h in G*, h^e, and m in X. But then

since y is a conjugate of x_1, x in the center of X, it follows that [k, y]

= [hgmg~1,y]= [h, y]; hence [[k,y] ■ ■ -y]=[[h,y] • ■ ■ y]^e since

[y, G*] =G*. But this is a contradiction of the nilpotency of Fand we

conclude that Y=gXg~1 when x is not in the centralizer of G*.

If x is in the centralizer of G* then x is in the center of G and since

x is in every Sylow q group of G, x is in Y. Then by an induction

argument the theorem is true in G/(x) and from this the theorem

follows for G when G* is minimal normal.

The general case now follows easily from this. As in the proof of

Theorem 1 there is an x and a normal subgroup H of G properly con-

tained in G* such that [x, 77] =77. Without loss in generality x can

be taken in X. By an induction argument, Y/H=(gH)X/H(gH)~1

for some g77 in G*/H and hence if g is an element of g77 then g-Xg-1

is a complement of K* in the proper subgroup K generated by Y and

77. But [K, H]=H = K* and by the induction assumption again

there is an hEH so that h(gXg~1)h~1= Y. This completes the proof

of the theorem.

Remark. If h is in G* then either h is in the center of G or hXhr1

9^X. For if hXh~l = X then X is normal in the group generated by

X and h; so also is (h). Hence [x, h]EXC\(h) =E and h is in the

center of G.

Remark. If x is in the center of X then x does not commute with

any of its conjugates. For if y^x is a conjugate of x, then it is clear

that y = hxh~l for some hEG*. If x and y commute, then x commutes

with [h, x]EG* where [h, x]^e since y^x. Hence [x, G*]?*G*. Let

K be the group generated by x and G*; then K* is properly contained

in G* and, being normal in G, K contains a normal subgroup 77 of

G so that either [77, x]=77 or [77, x]=£. Then by an induction

argument assuming the statement true in G/77, we see that since

y^hxhr1 then h must be in 77 and consequently [h, x] is in 77. Since

[h, x\^e and commutes with x it is not possible that [77, x] =77. On

the other hand [77, x] cannot be E for then [h, x] would be e. We

thus get a contradiction by assuming that x can commute with one

of its conjugates.

On the group of automorphisms of G when G* is Abelian and G has

no center.
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Theorem 3. If G is a group with no center and G* is Abelian, then

both G and A, the group of automorphisms of G, are contained in the

holomorph R of G*. Furthermore if D and F are complements of G* in

A, then there is an h(EG* so that hDh~1 = F.

Proof. That G is in P follows from Theorem 1; for G=G*X where

G* is normal in G and Gf~\X = E.

Now G* is a characteristic subgroup of G and therefore every auto-

morphism of G maps G* into itself. Suppose m is an automorphism of

G which commutes with all the elements of G*. Let P be the holomorph

of G and m and let Z be the centralizer of G* in P. Then Z is normal in

P and hence for every &GG*, [mh, G\C_ZC\G = G*. In view of Theo-

rem 2 there is an ho in G* so that mho maps X into itself; that is,

[mho, X]C^. Therefore [mho, X\(ZXC\G*=E and mho commutes

with every element of X as well as of G*; that is, mho is the identity

automorphism in G or m is the same as the inner automorphism

determined by h0~x. It follows that A/G* is isomorphic to a subgroup

M of automorphisms of G*, M containing X as a. normal subgroup.

Then N, the holomorph of M with G* contains a copy of G and the

centralizer of this copy of G is P. Then since N and A are both

groups of automorphisms of G having the same order, A is isomorphic

to N and hence A is a subgroup of R as the theorem asserts.

We now show that if D and F are two complements of G* in A

then there is an h(E.G* so that F = hDh~l. It is clear that D(~\G is

normal in D and is a complement of G* in G; hence there is an

h£G* so that h(DC\G)h-l = Fr\G. But FC\G determines P com-

pletely ; for if F(~\G were normal in F and also in F' 9* F, then FP\G

would be normal in the group generated by F and P' which must

necessarily intersect G* in a subgroup Zt^E. But then [Z, Ff~\G]

C(FC\G) and [Z, FPiG]CG*. whence it follows that [Z, FP\G]=P
and G has a nontrivial center contrary to hypothesis. It follows that

Ff\G determines P completely, and then hDhr1 must be P. This

completes the proof of the theorem.
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