AN INEQUALITY FOR LINEAR OPERATORS BETWEEN L^p SPACES

R. E. FULLERTON

1. Introduction. Let R and S be sets of points with completely additive non-negative measure ϕ and ψ defined over σ -rings $\mathcal{J}(R)$, $\mathcal{J}(S)$ of subsets of R and S respectively. Assume also that R and S are σ -finite with respect to ϕ and ψ . For any real number p, $1 \leq p < \infty$, $L^p(R, \phi)$ will denote the Banach space of real-valued functions $x(\psi)$ for which $\int_R |x(t)|^p d\phi < \infty$ where the norm is defined by $||x|| = (\int_R |x(t)|^p d\phi)^{1/p}$. $L^q(S, \psi)$ will denote a similar space for the set S with measure ψ . It is known [2; 3] that the space $L^p(R, \phi)$ is equivalent as a Banach space to the space $V^p(R, \phi)$ of completely additive set functions of bounded p-variation where p-var $F(e) = \sup_{\tau} (\sum_{i=1}^n |F(e_i)|^p / [\phi(e_i)]^{p-1})^{1/p}$ where the supremum is taken with respect to all finite families π of disjoint subsets of R of finite nonzero measure.

If T is a bounded linear operator between two spaces of the above type, $L^p(R, \phi)$ and $L^q(S, \psi)$, it can be shown that T can be represented as the derivative of an integral involving a kernel. Thus $Tx = (d/de) \int_R K(e, t) x(t) d\phi$ where K(e, t) is defined for $e \in F(R)$, $t \in R$, $\int_R K(e, t) x(t) d\phi \in V^q(S, \psi)$ and the symbol d/de applied to a completely additive and absolutely continuous set function denotes the integrable point function associated with it by the Radon-Nikodym theorem. This representation can be obtained by using the standard theorems for representations of linear functionals over spaces of the type $L^p(R, \phi)$ [1].

The problem in connection with this representation which presents a greater difficulty is that of determining necessary and sufficient conditions on the kernel to insure that the operator is one of the desired type and also to find a suitable expression or suitable inequalities for the norm of the operator T in terms of the kernel. Thus if the norm of T lies between two fixed multiples of some expression involving the kernel, this yields a convenient necessary and sufficient condition that T be bounded. In the case in which $1 \le p < \infty$, q=1, such bounds were found on the norm of T and in case T was a positive operator, an exact expression for the norm of T was found by the author [2]. In this paper, the same techniques as were used in [2] are applied to the case for q>1 to determine a convenient expression for a lower bound on the norm of T under certain

Presented to the Society, May 1, 1954; received by the editors May 17, 1954.

conditions on p and q and on the measure of S. The result is weaker than the result in the case q=1 but it does appear to give a nontrivial lower bound to the norm of the operator T.

2. Inequalities for the norm of the operator.

THEOREM. Let T be a bounded linear operator from $L^p(R, \phi)$ to $L^q(S, \psi)$, $1 \leq p$, $q < \infty$. Then there exists a real-valued function K(e, t) defined on $\mathcal{F}(S) \times R$ such that for each $x \in L^p(R, \phi)$,

$$Tx = (d/de) \int_{R} K(e, t) x(t) d\phi$$

where K(e, t) satisfies the following conditions:

- (1) $\int_{E} K(\cdot, t) d\phi \in V^{q}(S, \psi)$ for each $E \in \mathcal{I}(R)$, $\phi(E) < \infty$.
- (2) $K(e, \cdot) \in L^{p'}(R, \phi)$ for each $e \in \mathcal{F}(S)$, 1/p + 1/p' = 1.
- (3) $||T|| \le q \text{var}_{S} \left[\left(\int_{R} |K(e, t)|^{p'} d\phi \right)^{1/p'} \right].$
- (4) If $p \leq q$ and $\psi(S)$ is finite then the integral $\int_{\mathbb{R}} |K(e, t)|^{p'} d\phi$ has bounded q-variation.
- (5) $(q\text{-var}_S \int_R |K(e,t)|^{p'} d\phi)^{1/p'} / \sup_{\tau} (\sum_{j=1}^m [\psi(e_j)]^{(p'-1)(q-1)})^{1/qp'} \leq ||T||$ where the supremum is taken over all finite disjoint families of sets of S of finite nonzero measure.

In particular, if $\psi(S) \leq 1$ and $p \leq q$ then

$$\left[q\text{-var}_{S}\int_{R}\left|K(e,t)\right|^{p'}d\phi\right]^{1/p'}\leq \|T\|.$$

PROOF. If T is bounded linear from $L^p(R, \phi)$ to $L^q(S, \psi)$ and if Tx = y, let the operator U be defined from $L^p(R, \phi)$ to $V^q(S, \psi)$ as $Ux = \int_{e} y(s) d\psi$. U is bounded linear from $L^p(R, \phi)$ to $V^q(S, \psi)$ and has the same norm as T [2; 3] and hence for any fixed $e \in F(S)$, the functional defined by assigning to each $x \in L^p(R, \phi)$ the value of Ux at e yields a linear functional over $L^p(R, \phi)$. Thus, by using the known representation theorems for linear functionals on L^p , [1], $Ux(e) = \int_R K(e, t)x(t)d\phi$ where $K(e, \cdot) \in L^{p'}(R, \phi)$ for each $e \in F(S)$. Thus $Tx = (d/de)\int_R K(e, t)x(t)d\phi$ and (2) is proved. If $\gamma_E(t)$ is the characteristic function of $E \in \mathcal{F}(S)$, then $\gamma_E \in L^p(R, \phi)$ and $\int_R K(e, t)\gamma_E(t)d\phi = \int_E K(e, t)d\phi \in V^q(S, \psi)$. Thus (1) is true. The Hölder inequality can be used to prove (3). For $x \in L^p(R, \phi)$.

$$\begin{aligned} \|Tx\| &= \|Ux\| = q\text{-}\mathrm{var}_S \int_R K(e, t) x(t) d\phi \\ &\leq q\text{-}\mathrm{var}_S \left(\int_R |K(e, t)|^{p'} d\phi \right)^{1/p'} \left(\int_R |x(t)|^p d\phi \right)^{1/p}. \end{aligned}$$

The principal part of the proof of the rest of the theorem lies in the proof of the inequality (5). Let $\Pi = \{\pi\}$ be the class of all families of disjoint measurable subsets $\pi = \{E_i\}$ of finite nonzero measure in R. It was proved in [2] that the set $B \subset L^p(R, \phi)$ consisting of all functions of the type $z(t) = \sum_{i=1}^n \left\{ \left[a_i \gamma_{E_i}(t) \right] / \left[\psi(E_i) \right]^{1/p} \right\}$ is dense in the unit sphere of $L^p(R, \phi)$ where $\gamma_E(t)$ denotes the characteristic function of E, $\sum_{i=1}^n |a_i|^p \le 1$, and $\{E_i\}$ ranges over all of Π . Thus $\|T\| = \sup_{i \in B} \|Tz\|$. Let $\{e_i\}$ be any finite family of sets in $\mathcal{J}(S)$ of finite nonzero measure. Then

$$\left\{ \sum_{j=1}^{m} \frac{\left| \int_{R} K(e_{j}, t) z(t) d\phi \right|^{q}}{\left[\psi(e_{j}) \right]^{q-1}} \right\}^{1/q} \\
= \left\{ \sum_{j=1}^{m} \frac{\left| \sum_{i=1}^{n} a_{i} \left(\int_{E_{i}} K(e_{j}, t) d\phi \right) / \left[\phi(E_{i}) \right]^{1/p} \right|^{q}}{\left[\psi(e_{j}) \right]^{q-1}} \right\}^{1/q} \\
= \left\{ \sum_{j=1}^{m} \left| \sum_{i=1}^{n} a_{i} \frac{\int_{E_{i}} K(e_{j}, t) d\phi}{\left[\psi(e_{j}) \right]^{1/q'} \left[\phi(E_{i}) \right]^{1/p}} \right|^{q} \right\}^{1/q} \leq ||T||.$$

In particular, for any $e \in F(S)$, $0 < \psi(e) < \infty$,

$$\sum_{i=1}^{n} a_{i} \frac{\int_{E_{i}} K(e, t) d\phi}{\left[\phi(E_{i})\right]^{1/p}} \leq \|T\| \left[\psi(e)\right]^{1/q'}$$

for all families $\{E_i\}$, $i=1, 2, \cdots, n$, as described above and for all finite sequences $\{a_i\}$, $i=1, 2, \cdots, n$, of real numbers such that $\sum_{i=1}^n |a_i|^p \le 1$. Let $\beta_i = [\int_{E_i} K(e, t) d\phi] / [\phi(E_i)]^{1/p}$, $i=1, 2, \cdots, n$. This sequence $\{\beta_i\}$ can be considered as an infinite sequence by adding zeros after the *n*th term. Hence, if $\{a_i\}$ is any sequence for which $\sum_{i=1}^{\infty} |a_i|^p \le 1$, $|\sum_{i=1}^{\infty} \beta_i a_i| \le ||T|| [\psi(e)]^{1/q'}$. Hence the sequence $\{\beta_i\}$ represents a linear functional f over f of norm not exceeding $||T|| [\psi(e)]^{1/q'}$ and by using the known representation theorems for the norm of such a functional, $||f|| = \sup_{\Sigma |a_i| \le 1} |\sum_{i=1}^{\infty} \beta_i a_i| = (\sum_{i=1}^{\infty} |\beta_i|^{p'})^{1/p'} \le ||T|| [\psi(e)]^{1/q'}$. Hence

$$\left(\sum_{i=1}^{n}\left\|\left[\int_{E_{i}}K(e,t)d\phi\right]\right/\left[\phi(E_{i})\right]^{1/p}\right|^{p'}\right)^{1/p'}\leq \left\|T\right\|\left[\psi(e)\right]^{1/q'}$$

for all partitions $\{E_i\}$ of R as described above and for any $e \in F(S)$, $0 < \psi(e) < \infty$. Hence if the supremum is taken over all such partitions

$$\sup_{\pi} \left\{ \sum_{i=1}^{n} \left| \frac{\int_{\mathcal{B}_{i}} K(e, t) d\phi}{\left[\phi(E_{i}) \right]^{1/p}} \right|^{p'} \right\}^{1/p'} = \sup_{\pi} \left\{ \sum_{i=1}^{n} \frac{\left| \int_{\mathcal{B}_{i}} K(e, t) d\phi}{\left[\phi(E_{i}) \right]^{p'-1}} \right|^{1/p'} \right\}^{1/p'}$$

$$= p' \cdot \operatorname{var}_{R} \left| \int_{\mathcal{B}} K(e, t) d\phi \right|$$

$$= \left(\int_{R} \left| K(e, t) \right|^{p'} d\phi \right)^{1/p'}$$

$$\leq \|T\| [\psi(e)]^{(q-1)/q}$$

and hence for any $e \in \mathcal{J}(S)$ of finite nonzero measure,

$$\frac{\left[\int_{R} |K(e, t)|^{p'} d\phi\right]^{q}}{\left[\psi(e)\right]^{q-1}} \leq ||T||^{p'q} [\psi(e)]^{(p'-1)(q-1)}$$

Let $\{e_j\}$ be any finite family of subsets of S of finite nonzero measure, $j=1, 2, \cdots, m$. Then

$$\sum_{j=1}^{m} \frac{\left[\int_{R} \left| K(e_{j}, t) \right|^{p'} d\phi \right]^{q}}{\left[\psi(e_{j}) \right]^{q-1}} \leq \| T \|^{p'q} \left(\sum_{j=1}^{m} \left[\psi(e_{j}) \right]^{(p'-1)(q-1)} \right),$$

$$\left[\sum_{j=1}^{m} \frac{\left[\int_{R} \left| K(e_{j}, t) \right|^{p'} d\phi \right]^{q}}{\left[\psi(e_{j}) \right]^{q-1}} \right]^{1/q} \leq \| T \|^{p'} \left(\sum_{j=1}^{m} \left[\psi(e_{j}) \right]^{(p'-1)(q-1)} \right)^{1/q}.$$

If the least upper bound of the two quantities is taken with respect to all such families $\{e_i\}$ of S then

$$\sup_{\pi} \left[\sum_{j=1}^{m} \frac{\left[\int_{R} \left| K(e_{j}, t) \right|^{p'} d\phi \right]^{q}}{\left[\psi(e_{j}) \right]^{q-1}} \right]^{1/q}$$

$$= q \cdot \operatorname{var}_{\pi} \left(\int_{R} \left| K(e, t) \right|^{p'} d\phi \right) \leq \left\| T \right\|^{p'} \sup_{\pi} \left(\sum_{j=1}^{m} \left[\psi(e_{j}) \right]^{(p'-1)(q-1)} \right)^{1/q}$$

and hence

$$\left(q \cdot \text{var}_{\pi} \int_{R} |K(e, t)|^{p'} d\phi\right)^{1/p'} / \sup_{\pi} \left(\sum_{j=1}^{m} [\psi(e_{j})]^{(p'-1)(q-1)}\right)^{1/q p'} \leq ||T||.$$

If S has finite measure and $(p'-1)(q-1) \ge 1$, the supremum in the

denominator is finite and this implies that $\int_{\mathbb{R}} |K(e, t)|^{p'} d\phi$ has bounded q-variation. In particular, if the measure of S is less than one and $(p'-1)(q-1) \ge 1$, then for each partition $\{e_j\}$, $\sum_{j=1}^{m} [\psi(e_j)]^{(p'-1)(q-1)} \le 1$ and

$$\left[q\text{-var}_S\left(\int_R \left| K(e, t) \right|^{p'} d\phi\right)\right]^{1/p'} \leq \|T\|.$$

However, (p'-1) $(q-1) \ge 1$ implies $q \ge p'/(p'-1) = p$. Thus if $q \ge p$ the above inequalities will hold. Hence if $\psi(S) \le 1$, $q \ge p$, the double inequality $[q\text{-var}\int_R |K(e,t)|^{p'}d\phi]^{1/p'} \le ||T|| \le q\text{-var}(\int_R |K(e,t)|^{p'}d\phi)^{1/p'}$ will hold. Thus if the right member of the inequality is finite the integral represents a bounded linear operator between L^p and V^q , and if the norm of T is finite, the left member of the inequality is finite. It is to be noted that since there is no guarantee that $\int_R |K(e,t)|^{p'}d\phi$ is an additive set function, the theorem of Riesz on the equivalence of the q-variation to the qth integral norm will not apply and the q-variation cannot be replaced by an integral.

In case p = q, then (q-1)(p'-1) = 1 and in this case

$$\sup_{\pi} \sum_{j=1}^{m} [\psi(e_j)]^{(p'-1)(q-1)} = \psi(S).$$

Hence we have the

COROLLARY. If S has finite measure and p = q, then

$$\left(\left[\left.q\text{-var}_{S}\right.\int_{R}\left|\left.K(e,t)\right.\right|^{q'}d\phi\right]\right/\left[\psi(S)\right]^{1/q}\right)^{1/q'}\leq \left.\left\|\left.T\right\|\right.$$

References

- 1. S. Banach, Theorie des opérationes linéaires, Warsaw, 1934.
- 2. R. E. Fullerton, The representation of linear operators from L^p to L, Proc. Amer. Math. Soc. vol. 5 (1954) pp. 689-696.
- 3. F. Riesz, Untersuche über Systeme integrierbar Funktionen, Math. Ann. vol. 69 (1910) pp. 449-497.

University of Wisconsin