AN INEQUALITY FOR LINEAR OPERATORS BETWEEN
L» SPACES

R. E. FULLERTON

1. Introduction. Let R and S be sets of points with completely
additive non-negative measure ¢ and ¢ defined over g-rings F(R),
F(S) of subsets of R and S respectively. Assume also that R and S
are o-finite with respect to ¢ and . For any real number p, 1 £p < x,
L»(R, ¢) will denote the Banach space of real-valued functions x(¥)
for which [fz|%(f)|?dp < © where the norm is defined by |||
= (fRI x(t)I’d¢)”P. L(S, ¢) will denote a similar space for the set S
with measure . It is known [2; 3] that the space L?(R, ¢) is equiva-
lent as a Banach space to the space V?(R, ¢) of completely addi-
tive set functions of bounded p-variation where p-var F(e)
=sup,( 2, |F(e,~)|”/ [#(e:) =)' where the supremum is taken
with respect to all finite families 7 of disjoint subsets of R of finite
nonzero measure.

If T is a bounded linear operator between two spaces of the above
type, L?(R, ¢) and L(S, ¢), it can be shown that T can be repre-
sented as the derivative of an integral involving a kernel. Thus Tx
=(d/de) [rK (e, t)x(t)dp where K(e, t) is defined for e€ F(R), tER,
JrK(e, t)x(t)dpE Ve(S, ¢) and the symbol d/de applied to a com-
pletely additive and absolutely continuous set function denotes the
integrable point function associated with it by the Radon-Nikodym
theorem. This representation can be obtained by using the standard
theorems for representations of linear functionals over spaces of the
type L7(R, ¢) [1].

The problem in connection with this representation which pre-
sents a greater difficulty is that of determining necessary and suffi-
cient conditions on the kernel to insure that the operator is one of
the desired type and also to find a suitable expression or suitable
inequalities for the norm of the operator T in terms of the kernel.
Thus if the norm of T lies between two fixed multiples of some ex-
pression involving the kernel, this yields a convenient necessary
and sufficient condition that T be bounded. In the case in which
1Zp< o, g=1, such bounds were found on the norm of T and in
case T was a positive operator, an exact expression for the norm of T
was found by the author [2]. In this paper, the same techniques as
were used in [2] are applied to the case for ¢>1 to determine a con-
venient expression for a lower bound on the norm of T under certain

Presented to the Society, May 1, 1954; received by the editors May 17, 1954.
186



LINEAR OPERATORS BETWEEN L» SPACES 187

conditions on p and ¢ and on the measure of S. The result is weaker
than the result in the case ¢=1 but it does appear to give a non-
trivial lower bound to the norm of the operator T.

2. Inequalities for the norm of the operator.

THEOREM. Let T be a bounded linear operator from L?(R, ¢) to
LS, ), 1 =p, g< . Then there exists a real-valued function K (e, t)
defined on F(S)XR such that for each xEL*(R, ¢),

Tx = (d/de) fK(e, 1) x(t)de
R

where K (e, t) satisfies the following conditions:

(1) JeK(-, )dpEVU(S, ¥) for each EEF(R), $(E) < .

(2) K(e, -)EL?'(R, ¢) for each e€F(S), 1/p+1/p'=1.

@) || Tl Sg-vars [(Jz] K(e, 1)|'dg)¥>'].

(4) If p=<q and Y(S) is finite then the integral [r|K(e, t)|?'dgp has
bounded g-variation.

(5) (g-vars [z| K(e.t) | #'dg) /%' /sup, (3o [ (e;) | e)riar < || |
where the supremum is taken over all finite disjoint families of sets of
S of finite nonzero measure.

In particular, if Y(S) =1 and p <q then

’

I:q-varszfK(e, t)|F’d¢:|”p < [|T“

Proor. If T is bounded linear from L?(R, ¢) to LS, ¢) and if
Tx =1y, let the operator U be defined from L?(R, ¢) to VS, ¢) as
Ux=[yy(s)dy. U is bounded linear from L?(R, ¢) to V4(S, ¢) and
has the same norm as T [2; 3] and hence for any fixed e F(S), the
functional defined by assigning to each x&L?(R, ¢) the value of Ux
at e yields a linear functional over L?(R, ¢). Thus, by using the
known representation theorems for linear functionals on L7, [1],
Ux(e) = [rK (e, t)x(t)dp where K(e, -) EL?'(R, ¢) for each eE F(S).
Thus Tx=(d/de)[rK(e, t)x(t)dp and (2) is proved. If yg(f) is the
characteristic function of E&EF(S), then ~vyr&EL?(R, ¢) and
JrK(e, t)ye(t)dp=[eK (e, t)dpES VS, ¢). Thus (1) is true. The
Hélder inequality can be used to prove (3). For x&L?(R, ¢) /|

|7+ = ||U«]| = g-vars fRK(e, 1) x(t)de

=< g¢-vars (f | K(e, ?)
E

1/p’ 1/p
»’ ?d, .
d¢> ( fR 301 ¢)
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The principal part of the proof of the rest of the theorem lies in the
proof of the inequality (5). Let Il= {7} be the class of all families
of disjoint measurable subsets == { E;} of finite nonzero measure in
R. It was proved in [2] that the set BCL?(R, ¢) consisting of all
functions of the type z(t) = D i1 { [arve,(t)]/[W(E:)]V/?} is dense in
the unit sphere of L?(R, ¢) where yg(t) denotes the characteristic
function of E, Y m, |a.~|"§1, and {E.} ranges over all of II. Thus
| T|| =sup.cs || T2||. Let {e;} be any finite family of sets in F(S) of
finite nonzero measure. Then

q \1/¢
o | [ KCeanstias|
R T

i 7:: di( E.K(eiv l)d¢>/ [o(E)]v»
B E [¥(ep ]
| K(e; )d¢

E;
2 Z Ferwere | | =

In particular, for any eE€ F(S), 0 <¢/(e) < 0,

g\1/q

K(e, t)d¢
a; ————— = || 7| [w(e) ]!/
E’ [6(E) e Il
for all families {E;}, i=1,2, - - -, n, as described above and for all
finite sequences {ai}, i=1, 2, - - -, n, of real numbers such that

201 |ai|?=1. Let Bi=[[5.K(e, t)dg]/[$(E) ]V, i=1, 2, - - -, .
This sequence {B;} can be considered as an infinite sequence by
adding Zeros after the nth term. Hence, if {a;} is any sequence for
which >, |ai|?=1,| 202, Bias| <||T]| [¥(e) ]V« Hence the sequence
{B:} represents a linear functional f over /* of norm not exceed-
ing [|T[| [¢(e)]¥e and by using the known representation theo-
rems for the norm of such a functional, ||f|| =supziais: | D2oims Bias

= (X2 |87 <||T]| [ (e) ]¥. Hence
> p’\1/p’
y d E‘. 1/p é T 1/¢’
(§ [ S X 4’]/ el ) 171l [w(o)]

for all partitions {E,} of R as described above and for any e&E F(S),
0<y(e) < ». Hence if the supremum is taken over all such partitions
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p’\1/p’ ' \1/p’
RIRAL . | ] Keenis
B: = . -
SuPr .-21 [6(E)]v» P t—zl [¢(E) ]
= p’'- K(e, ¢
p’-varg L (e, t)do

= (fR| K(e, t) |,,,d¢)1/p'

= || 7l fte) Jevra

and hence for any e ¥(S) of finite nonzero measure,

[ fRI K(e, 1) |P’d¢]q

[w(e) ]

Let {e;} be any finite family of subsets of S of finite nonzero meas-
ure, j=1,2, - - -, m. Then

. S I xCanlas|
:'-Zl R[‘P(ei)]""’

q\1l/q
. | ) | KCin|7ds ) q
’2 [f R ['p:e’_:]q_l ] < ”TH ,,:( ’_El [¢(ei)]<p'—n(q—l))1/ .

If the least upper bound of the two quantities is taken with respect
to all such families {e;} of S then

3 [fan(ei,t)lp’dd,]q g

Sup» Z

= ” T||7’2[¢(e) ] DD

< ll2le(  weeale-vien),

j=1

i1 [w(e;) ]
m ‘1/0
= g-vary (f | K(e, t) I”'dd’) < ”T”p' sup,( Z [‘l/(e’,)](w:-l)(q-l))
R =1
and hence
1/p’ m

R . K , ¢ »'d . i (p'—1)(¢—1) } 1/gp’ < (Tl|.
(gvare [ 150 01706) " /sup. (£ teatormvn i < 2

If S has finite measure and (p'—1)(¢—1) =1, the supremum in the
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denominator is finite and this implies that fz|K(e, t)|?’d$ has
bounded g¢-variation. In particular, if the measure of S is less
than one and (p'—1)(¢—1)=1, then for each partition {e;},
25, W) oD 1 and

[9—vars(fR| K(e, ?) I”'d‘ﬁ)]l/p’ = 7]l

However, (p'—1) (¢—1) =1impliesg=p'/(p'—1) =p. Thus if g= p the
above inequalities will hold. Hence if ¢(S) £1, ¢=p, the double in-
equality [g-var f}zl K(e, t) I "'d¢]‘/P’_S_.”T” =g-var (le K(e, t)|?'dgp)Ve’
will hold. Thus if the right member of the inequality is finite the
integral represents a bounded linear operator between L? and V7,
and if the norm of T is finite, the left member of the inequality is
finite. It is to be noted that since there is no guarantee that
Jr| K(e, t)| »'d$ is an additive set function, the theorem of Riesz on
the equivalence of the g-variation to the gth integral norm will not
apply and the g-variation cannot be replaced by an integral.
In case p=gq, then (¢—1)(p’'—1)=1 and in this case

sup 3 [W(e) @D = y(s).

*  j=1
Hence we have the

COROLLARY. If S has finite measure and p =g, then

([q-vars fnl K(e, t)lq’dos] / MS)J"‘I)W = |71
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