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1. Introduction. Let £ and 5 be sets of points with completely

additive non-negative measure <j> and \j/ defined over o"-rings J(R),

J(S) of subsets of £ and 5 respectively. Assume also that £ and 5

are <r-finite with respect to <b and \p. For any real number p, l^p< °°,

L"(R, <f>) will denote the Banach space of real-valued functions x(\f/)

for which /i2|x(/)| pdxj>< a> where the norm is defined by ||x||

= (Jr\ x(t) | pd<p)1,p. L"(S, \j/) will denote a similar space for the set S

with measure^. It is known [2; 3] that the space LP(R, <f>) is equiva-

lent as a Banach space to the space VP(R, <p) of completely addi-

tive set functions of bounded ^-variation where p-var F(e)

= supT(£?_i | F(el)\p/[d>(ei)]p~l)llp where the supremum is taken

with respect to all finite families x of disjoint subsets of £ of finite

nonzero measure.

If £ is a bounded linear operator between two spaces of the above

type, LP(R, <j>) and L"(S, ip), it can be shown that T can be repre-

sented as the derivative of an integral involving a kernel. Thus Tx

= (d/de)fBK(e, t)x(t)d<f> where K(e, t) is defined for e££(£), <££,
JiiK(e, t)x(t)d<p£.Vq(S, i/') and the symbol d/de applied to a com-

pletely additive and absolutely continuous set function denotes the

integrable point function associated with it by the Radon-Nikodym

theorem. This representation can be obtained by using the standard

theorems for representations of linear functionals over spaces of the

type £"(£, <*>) [l].

The problem in connection with this representation which pre-

sents a greater difficulty is that of determining necessary and suffi-

cient conditions on the kernel to insure that the operator is one of

the desired type and also to find a suitable expression or suitable

inequalities for the norm of the operator £ in terms of the kernel.

Thus if the norm of T lies between two fixed multiples of some ex-

pression involving the kernel, this yields a convenient necessary

and sufficient condition that T be bounded. In the case in which

1^£<°°, q = \, such bounds were found on the norm of T and in

case T was a positive operator, an exact expression for the norm of £

was found by the author [2]. In this paper, the same techniques as

were used in [2] are applied to the case for q> 1 to determine a con-

venient expression for a lower bound on the norm of £ under certain
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conditions on p and a and on the measure of S. The result is weaker

than the result in the case g = l but it does appear to give a non-

trivial lower bound to the norm of the operator T.

2. Inequalities for the norm of the operator.

Theorem. Let T be a bounded linear operator from LP(R, <f>) to

Lq(S, r//), l^p, q< oo. Then there exists a real-valued function K(e, t)

defined  on J(S)XR  such  that for each x^Lp(R,  <j>),

Tx = (d/de) I K(e, t)x(t)d<j>
J R

where K(e, t) satisfies the following conditions:

(1) fEK( ■, t)d*t>e V«(S, i» for each EEJ(R), 0(E) < °°.
(2) K(e,   )eL"'(R, <p) for each eGJ(S), l/p+l/p' = l.
(3) ||r||gg-vars [(JB\K(e, 0|'W'].
(4) If p^q and ^(5) is finite then the integral fs\K(e, t)\"'d<j> has

bounded q-variation.

(5) (g-vars/«|K(e,t) \ p,d<j>)""'/sup,(££,[fie,)]<*'-ih«-i>)i/«p'^||r||
where the supremum is taken over all finite disjoint families of sets of

S of finite nonzero measure.

In particular, if ^-(5) = 1 and p^q then

[q-vzisJ \K(e,t)\*'d^  *   S||r||.

Proof. If T is bounded linear from LP(R, <j>) to L"(S, ^) and if

Tx=y, let the operator U be defined from LP(R, 0) to V"(S, 0) as

Ux=J,y(s)d4>. U is bounded linear from LP(R, 0) to Vq(S, 0) and
has the same norm as T [2; 3] and hence for any fixed e^F(S), the

functional defined by assigning to each x^Lp(R, 0) the value of Ux

at e yields a linear functional over LP(R, 0). Thus, by using the

known representation theorems for linear functionals on Lp, [l],

Ux(e)=fRK(e, t)x(t)dd> where K(e, -)GLP'(R, 0) for each e£.F(S).

Thus Tx = (d/de)fRK(e, t)x(t)d<p and (2) is proved. If 7b(0 is the

characteristic function of E^J(S), then 7b£Z.p(2?, 0) and

JRK{e, t)yB{t)d<j>=JEK{e, t)dd>EV*(S, 0). Thus (1) is true. The
Holder inequality can be used to prove (3). For x(£Lp(R, 0)J

||r*|| = \\Ux\\ = g-vars   J   K{e, t)x(t)d<j>
JR

^ g-vars ( J   \ K(e, I) \ "'dA      ( f I * (0 |W)   ■
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The principal part of the proof of the rest of the theorem lies in the

proof of the inequality (5). Let 11= {x} be the class of all families

of disjoint measurable subsets x= [Ei] of finite nonzero measure in

£. It was proved in [2] that the set BC.LP(R, </>) consisting of all

functions of the type z(t) = E"-i { [arfEi(t)]/[4'(Ei)]llp} is dense in

the unit sphere of LP(R, <j>) where Yb(£) denotes the characteristic

function of £, E"-i |#»|p^l. and {£<) ranges over all of II. Thus

||r|| =sup*£B \\Tz\\. Let [ej] be any finite family of sets in J(S) of

finite nonzero measure. Then

/> 1    11/3K(eh t)z(t)d<p

1   U [He,)]*-*      ]

E* (/ K(eit t)d<b^/ [HEi)}11" '

=. § [*(«/) ]«-» .

/• 1 1 l/«
K(eh t)d<b

In particular, for any c££(5), 0 <ip(e) < w,

f K(e, l)d<t>

for all families {£.}, i — 1, 2, • • • , n, as described above and for all

finite sequences {a,}, * = 1, 2, • • • , n, of real numbers such that

2Xi |o«|»£l. Let /3,= [/£i£(e,_f)^]/[0(£,)]^, t = l, 2, • • • , ».
This sequence {/Si} can be considered as an infinite sequence by

adding zeros after the nth term. Hence, if {at} is any sequence for

which Ef=i |o,|p^l,| E<"ifra.-| ^||r||[^(e) ]>/»'. Hence the sequence

{p\} represents a linear functional / over lp of norm not exceed-

ing ||T"|| [^(e)]1'8' and by using the known representation theo-

rems for the norm of such a functional, ||/|| =supz|a,-igi | /Xi Piai]

= (ET-. ||8i|»'),/,,'^||r||[^(e)]l'«'. Hence

( E |[J K(e,o^ /[0(£,-)]1/p|J,y'P g llrUt^)]1"'

for all partitions {£,-} of £ as described above and for any e££(5),

0 <\j/(e) < oo. Hence if the supremum is taken over all such partitions
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IP p')Hp' fir p' )llp'
I   K{e, t)d4> II   K(e, l)d<t>

£   [0(e,.)]-  J =supmS kU)]- .
I C I

= />'-varfi    I  K(e, t)d<p
\Jb

= (J I K(e, t)\p'dA  '

^llrll^e)]^-1"'
and hence for any e£:J(S) of finite nonzero measure,

j \K(e, t)\p'd^T

-< ||T,||p'»f0(e)l<p'-1><«-1»
[0(e)]-1 -"   «     l^;J

Let {«y} be any finite family of subsets of 5 of finite nonzero meas-

ure, j = l, 2, • • ■ , m. Then

{ \K{eht)\p'dt\

r r ~i« "ji/«
| *(«,,*) |»'i0

I j-i me,)]""1 J \ ;-l /

If the least upper bound of the two quantities is taken with respect

to all such families {cj} of 5 then

J/J «.*«!"*]
H£ -[0(e,)]- j

= g-varT ( J | *(«, t) \ p'dA ̂ \\t\\p' supr ( f) [*(«,) ] ("'.-1) C«-»V

and hence

(g-varT f I X(e, <) |"'^   P /sup/ £ [^(^J^-iXt-iAi/w' ^ ||r||.

If 5 has finite measure and (p' — l)(g— 1) ^1, the supremum in the
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denominator is finite and this implies that Jg\K(e, t)\p'd<p has

bounded g-variation. In particular, if the measure of S is less

than one and (p' — l)(q — 1) ^1, then for each partition {ej},

E7-i [tA(«y)](j,'-1H«-1)^l and

Lvars^ J | K(e, t) \p'dA\   "  g ||r||.

However, (p'-l)(q-1)^1 impliesq^p'/(p'-l)= p.Thus if q^p the

above inequalities will hold. Hence if \f/(S)^l, q^p, the double in-

equality [q-\ar JR\K(e,t)\p'd4>}Up'^\\T\\^q-va.r (JR\K(e,t)\p'd4>yip'
will hold. Thus if the right member of the inequality is finite the

integral represents a bounded linear operator between Lp and V,

and if the norm of £ is finite, the left member of the inequality is

finite. It is to be noted that since there is no guarantee that

Jit\K(e, t)\p'd4> is an additive set function, the theorem of Riesz on

the equivalence of the g-variation to the qth. integral norm will not

apply and the ^-variation cannot be replaced by an integral.

In case p=q, then (q— l)(p' — 1) =1 and in this case

m

sup £ [f(ej)]<«-'-»<«-» =*(S).

Hence we have the

Corollary. // 5 has finite measure and p = q, then

flf-vars j \K{e,t)\"'d^\// [US)Vh\   '   ^\\t\\.
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