A SPECIAL DETERMINANT

L. CARLITZ

Let p be a prime and let R(r) denote the least non-negative residue of $r \pmod{p}$. The properties of Maillet's determinant (for references see [2]) $D_p = |R(rs')|$ $(r, s=1, \cdots, (p-1)/2)$ where $ss' \equiv 1 \pmod{p}$, suggest that it may be of interest to discuss the determinant

(1)
$$\Delta_k = |R((r-s)^k)| \quad (r, s=0, \dots, p-1; 1 \leq k \leq p-1).$$

Clearly Δ_k is a circulant. Consequently

(2)
$$\Delta_k = \sum_{r=1}^{p-1} R(r^k) \cdot \prod_{r=1}^{p-1} \sum_{r=1}^{p-1} R(r^k) \epsilon^{rs}, \quad \text{where } \epsilon = e^{2\pi i/p}.$$

Now by the binomial theorem

(3)
$$(1 - \epsilon)^{p-1-k} \equiv \sum_{r=0}^{p-1-k} \frac{(k+1)\cdots(k+r)}{r!} \epsilon^r$$

$$\equiv \sum_{r=0}^{p-1-k} \frac{(r+1)\cdots(r+k)}{k!} \epsilon^r \pmod{p}.$$

Next recall that (see for example [3, p. 207])

where the a_{ks} (Eulerian coefficients) are positive integers; clearly (4) implies

$$\sum_{k=1}^{k} a_{ks} = k!.$$

Then using (3) and (4) we get

$$(1-\epsilon)^{p-1-k} \sum_{s=1}^{k} a_{ks} \epsilon^{s-1} \equiv \sum_{r,s} {r+k \choose k} a_{ks} \epsilon^{r+s-1}$$

$$\equiv \sum_{t=1}^{p-1} \epsilon^{t-1} \sum_{s=1}^{k} a_{ks} {t-s+k \choose k}$$

$$\equiv \sum_{t=1}^{p-1} t^{k} \epsilon^{t-1} \qquad (\text{mod } p).$$

Received by the editors May 25, 1954.

Also it is clear from (5) that

(7)
$$\sum_{s=1}^{k} a_{ks} \epsilon^{s-1} \equiv \sum_{s=1}^{k} a_{ks} \equiv k! \pmod{1-\epsilon}.$$

Thus it follows from (6) and (7) that the number

$$\alpha = \sum_{t=1}^{p-1} t^k \epsilon^{t-1}$$

is divisible by $(1-\epsilon)^{p-1-k}$ and not by $(1-\epsilon)^{p-k}$. We recall that in the cyclotomic field generated by ϵ we have the prime ideal factorization

$$(p) = (1 - \epsilon)^{p-1}.$$

Now in the double product in the right member of (2), the sum

$$\sum_{r=1}^{p-1} R(r^k) \epsilon^{rs} \equiv \epsilon^s \sum_{r=1}^{p-1} r^k \epsilon^{s(r-1)} \pmod{p}$$

and is therefore divisible by exactly $(1-\epsilon)^{p-1-k}$. More precisely by (7)

$$\sum_{r=1}^{p-1} R(r^k) \epsilon^{rs} \equiv \epsilon^s k! (1-\epsilon)^{p-1-k} \pmod{(1-\epsilon)^{p-k}}$$

and therefore

$$(1-\epsilon)^{-p+1+k}\sum_{r=1}^{p-1}R(r^k)\epsilon^{rs}\equiv \epsilon^s k! \qquad (\text{mod } 1-\epsilon).$$

Multiplying together these congruences we get

(8)
$$p^{-p+1+k} \prod_{r=1}^{p-1} \sum_{r=1}^{p-1} R(r^k) \epsilon^{rs} \equiv (k!)^{p-1} \equiv 1 \pmod{1-\epsilon}.$$

Since the left number is a rational integer, (8) holds (mod p). Thus substituting in (2) it is clear that for k < p-1

(9)
$$\Delta_k \equiv p^{p-1-k} \sum_{r=1}^{p-1} R(r^k) \pmod{p^{p-k+1}}.$$

Put

$$S_k = \sum_{r=1}^{p-1} R(r^k);$$

since $p \mid S_k, p^2 \mid S_k$ for $1 \le k < p-1$, it follows from (9) that

$$(10) p^{p-k} \mid \Delta_k, p^{p-k+1} \mid \Delta_k (1 \leq k < p-1).$$

To get a more precise result, note first that if a = (k, p-1), then $S_k = S_a$. Put p-1 = ab; then in the first place

(11)
$$S_a = p(p-1)/2$$
 (b even).

For b odd, on the other hand, we may prove by the method used in [1] that

(12)
$$S_a \equiv -\frac{p}{2} + p \sum_{u} \frac{B_{bu+1}}{bu+1} \pmod{p^2},$$

where B_m denotes a Bernoulli number in the even suffix notation, and the summation is over $u=1, 3, \dots, a-1$.

We remark that for k=p-1 we have the easily verified formula

$$\Delta_{p-1} = \left| 1 - \delta_{rs} \right| = p - 1,$$

where δ_{rs} is the Kronecker delta. Also for k=1 we have the exact result

$$\Delta_1 = (p-1)p^{p-1}/2.$$

It follows from (2) and (8) that Δ_k never vanishes.

REFERENCES

- 1. L. Carlitz, The first factor of the class number of a cyclic field, Canadian Journal of Mathematics vol. 6 (1954) pp. 23-26.
- 2. L. Carlitz and F. R. Olson, Maillet's determinant, Proc. Amer. Math. Soc. vol. 6 (1955) pp. 265-269.
- 3. J. Worpitzky, Studien über die Bernoullischen und Eulerschen Zahlen, J. Reine Angew. Math. vol. 94 (1883) pp. 202-322.

DUKE UNIVERSITY