
REDUCTIBILITY OF POSITIVE TYPE POLYNOMIALS

HENRY TEICHER

1. Introduction. Let T+ denote the set of all positive type poly-

nomials, i.e., T+= { E/U ajX'} — \Pm{x)} where ay^O, O^j^w^l,

am5^0. Clearly, T+ is closed under multiplication but not factoriza-

tion. An analogous but wider class of functions has been considered

by Rosenbloom [4].

Let Tt be that subset of T+ which is irreducible over T+ (i.e.,

Pm(x)eTi, Pm(x)=Pk(x)-Pm_k(x), 0<k<m, implies Pk£T+ or

Pm-k(x)(£T+). It would be of interest to have a criterion for deciding

when an arbitrary member of T+ lies in Ti or Tr=T+ — 7\.

For m = 2, the sign of the discriminant of the quadratic provides

the answer while for m = 3 a NSC that Pm(x)^Tr is aia2^ao03. For

w=4a NSC can be given (§4) in terms of the location of a root of

P4(—x) (which is not very satisfactory) from which simpler conditions

can be derived in certain cases. Some partial results are given for

general m.

The preceding is manifestly applicable to the so-called "arithmetic

of probability distributions" (initiated by Paul Levy, see e.g. [2])

provided the random variables take on only a finite number of ra-

tional values (or values of the form a+kb, k rational, a, b real).

The proof of Theorem 1 contains a method of constructing an in-

decomposable (prime) distribution for any positive integer rn^l.

2. Preliminary considerations. Unless the contrary is stated it will

be understood that Pm(x)£7+. In the treatment of this polynomial

there is no loss of generality in supposing am = l, a0>0. Denoting by

Ai, A\, B{, d positive real numbers, the canonical decomposition of

Pm(x)£7 + into quadratic and linear factors can only be of the form

n (*2 -a,x+bs) n (*2+au+Bk) n (*2 + ^ n (*+cy
3 k in

-M(ntf)(ne:)(n4
The number of linear factors Lt may be supposed to be at most one.

Let Tq<Z.T+ denote the set of positively quadral polynomials

(see [3]), i.e., all quadratic factors are of the Q+ or Q° variety and

any linear factors are of the form L+. Hurwitz [l] has given a NSC

that all roots of Pm(x) have negative real part. By inserting a few
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equality signs here and there in I. Schur's proof of Hurwitz's Theo-

rem (see [5, appendix]) one obtains the following elementary exten-

sion:

Extended Hurwitz Theorem. A necessary and (if ax^0) suffi-

cient1 condition that Pm(x) £ Tt is that the determinants

01    00

Di = au       D2 =
03       02

oi        a0    0 • • • 0
ai    ao    0

03 02     01     Oo • • • 0
D% =    a%    a2    a\   , ■ • ■ , Dm =

fl5       04       03

02ot-1     02»i-2 '  '   "  0m

be non-negative. Here aj = 0 for j>m.

Obviously, Tt is closed under factorization and Tq(ZTT. Thus, the

problem originally stated retains interest only if the extended Hur-

witz criterion is violated, i.e., Pm(x) £T* = T+ — Tq. In such a case

there is at least one factor of the Q~ type and this may be represented

by Q-(x, e)=x2-Ax+eAi where e, A>0. Actually e>l/4 if

Q~(x, e) is to have no positive root (be a factor of Pm(x)).

3. Minimal degree polynomials.

Theorem 1. A NSC that there exist Pm(x)^T+ containing Q~(x, e)

=x2 — Ax-j-eA2 as a factor is that m^ smallest integer j such that

j arc cos (1/261'2) ^ir.2

Necessity. By the transformation x=Ay, we may suppose A=l.

Let S=4e-1>0 and bj = 2~'a^0. As the roots of Q~(x, e)=0 are

also roots of Pm(x) = 0,

(i-"       s4!'Q(-H-°'
"> I" [<)-l)/2J   /        j        \ "1

<1-2>      8,'*P<L £ U+1)(-'H = 0-

Denote the coefficients of bj in (1.1) by /3-=/,-(8) = 2'~1//e) and

those in (1.2) by &, = S1/2g; = 51/2gX5) = S1/22>_1£y(e). These quantities

are virtually the Tchebycheff polynomials of the 1st and 2nd kind,

1 If at = 0 and O2,+i>0 for somej'S l,Pm£r,; if a2,_i=0 for all j~^\,P(x)(^T,iso{

even degree and Pi„,(x) =i?m(x:2)=i?m(y) whence if i?m (y) £ r,, -P2m(x)€£7V

1 The principal value of the arc cosine is to be taken.
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say rf'(x) and Tf\x). In fact 7f(x) -*%(! -**)/**) and TfHx)
^x'gj+idl-x^/x2). Letting l+iSll2 = r (cos 0+i sin 0) with

r = (l+5)1/2, O<0<7r/2 we have from DeMoivre's theorem

//=//(«) = (! + «)"* cos #

Ay =  Ay(5)   =   (1 + 8)«» Sini0 = 51'2gy(5).

Rewrite (1.1) and (1.2) as

m m

(1.4,1.5) E^/i = 0=EMy-
i=o y-i

Since 6y^0 (actually 6o>0), from (1.4) and (1.5) there must be at

least one non-negative/, and non-positive hi for i^m. By (1.3) this

requires jd^ir, concluding necessity.

For any given e (>l/4), denote by M=M(e)^3 the minimal

(integral) value of m for which m arc cos (l/2e1/2) =^7r. Then PM (x)

exists and will be called a minimal polynomial containing Q~ or

minimal for Q~ or simply "minimal for e." As e—>l/4, the roots of

Q~(x, e) approach the positive real axis and M{e)—><». M(e) is a

step function continuous on the right and may be computed from the

relation e^(l/4) sec2 (ir/M).

Sufficiency. It suffices to construct a Pm(x). From (1.1), /o=»l.

Choose biu = 2~M, bM-i = 2~M\ hu\ (Am-i)-1, and 61 = J2= ■ ■ ■ —bM-2

= 0 thus satisfying (1.5). To fulfill (1.4) take ba = 2~M[\fM\ -fit-i
\hM\ (^m-i)-1]. From (1.3), hM-i>0, /a/_i<0 whence bo>0. If
A^l, a, = 2'A-%i^0. Q.E.D.

Clearly, the minimal degree M although not Pm{x) is unique.8 A

less accurate but simpler bound is given by

Corollary 1.1. For 1/4 <e±S 1/2, a necessary condition that

Q~(x, e) divides Pm(x) is m^M^ smallest integer j such that j^ir5~112.

Proof. This follows from arc tan 5»/2<51/2 for 0 <5 < 1.

Using the trigonometric identities for sin (9+<j>) and cos (6+<f>)

and  (1.1),  (1.2) we have /,(«) =/y_x(S) -5gy_x(o) and gy(5) =gy_i(5)

+/y_i(5), j^2, from which it is readily deduced that both g,(6) and

/y(5) satisfy the equation gy(S) =2gy_i(5) — (1+ 5)gy_2(5), j^2. A more

usable form of this equation is (see just below (1.2))

(1-6) f/to = g/-i(e) - «/-i(*), JZ.2.

' In the special cases « = «£. = 4-1 sec* (ir/M), M = 3, 4, • • • , the minimal poly-

nomial is unique and of the form xM+a0. For from (1.5), hju = 0 whence also 6/

«=0, IZjSM-l.
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Define now a "residual polynomial"

m—2 m

Pm-2(x) = £ cjX' by Pm(x) = E oy*' = (xi-Ax + e.42)iV.2(z).
y-o y-o

We have then

Theorem 2. // Q~(x, e) divides the minimal polynomial PM(x)£.T+,

the corresponding residual polynomial Pm-i(x)^T+ and (excluding

c.v/_2 = ajtf = 1) its coefficients form an increasing sequence.

Proof. Consider at first any Pm(x) £ T+ and as before let A = l

= am = cm~z. If we define c_2 = c_i=cm_i=cm = 0, then for any re-

sidual polynomial (regardless of minimality)

(2.1) eck — ck-i + cA_2 = ak, k = 0, 1, • • ■ , m.

By induction using (1.6) it follows that

i
(2.2) e'+1cy = £ «'--0y_,gi+1(€), j = 0, 1, • • • , m - 2.

t=0

If now m = M(e), then c;-^0, J = l, 2, • • • , M — 2, since gk>0 for

k<M in view of (1.3). Next from (2.2) and subsequently (1.6),

i
Cj+i - Cj = e-^y+i + X) e-(i+2' [|i+2 - egi+i]0y_<

t-0

= e-^+i + E «-(i+2)0y-,g.+3 ^ e-<'+2>0„fy+3 ^ 0
;=0

so long as j < M(e) — 3.

Corollary 2.1. // Q~(x, e) divides Pm(x)£_T+ and m^2M— 1, /Ac

residual polynomial Pm_2(x)£T'+ a«i i/s coefficients from Co to Cms

form an increasing sequence.

Proof. Suppose Pn+r(x) =(x2 — x+e) E"=o-2 c;*'- As before

Co, ft, • • • , cm-i are non-negative. By a backwards induction using

(2.1) and (1.6), c„+y_i= £w+i l<-y(«)«n+i for j=0, 1, • • • , r—1. The

largest subscript of g occurs for i = r, j' = 0 giving g,(e). Hence if

n = M and r^M—l the coefficients cm-i, Cm, • • • , £itf+r-2 are non-

negative. Thus Pm-2(x)ET+ for wg2Af-l. Q.E.D.

If m^2M, Pm^(x) need not £T+; e.g., if ikf(e) = 1/(2) =3

(s6 + 5x3 + 8) = (x2 - x + 2)(xl + xz - x1 + 2x + 4).

Denote by Mi = Mi(ti) the degree of a minimal polynomial contain-
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ing Qi (x, ti) as a factor. We consider next some effects of having two

Q~ factors.

Theorem 3. Let Pm(x)<=T+. If Pm(x) = (x2-A1x+e1A\)Pm_2(x)

with m = Mi-\-j where j = 0 or 1 and Pm_2(x) = (x2—A2x-\-t2A\)Pm^i(x)

where necessarily ei ̂  e2, then Mi > 2M2 — 1 —j and Pm_2(x) is not mini-

mal for e2.

Proof. Let Pm(x) = (x2-A2x + e2A\)Rm-2(x). As m^Mi + 1,

Rm-2(x)^T+. By Corollary 2.1, M1+j>2M2-l. Furthermore

Pm_2(x) cannot be minimal for e2 since Mi-\-j — 2 = M2 would imply

3>if2. Q.E.D.

Theorem 4. //P6(x) = £*.0 0yx' (£P+) is minimal for Q~(x, ej),

then the residual polynomial Pt(x) £ Tq.

Proof. For suppose P6(x) = (x2 — Cx + tiC2)Pt(x), P4(x) = (x2-;lx

+ eA2)(x2+Bx+D) with positive C, A, D, e. As a&stO implies

B>0, let D=nB2, m>0. As before, take A =1. By Theorem 2

(4.1, 4.2, 4.3)    B - 1 ^ e + iiB2 - B ^ B(e - nB) t ey.B2.

By Theorem 3, P4 is not minimal for e; hence M(e)=3, e_ 1. Now

(4.1) implies n^-e-l^^B-n'1)2^®, i.e., M_1~l^e^l and in

particular/i^ 1/2. From (4.2), g(B) =2nB2-(l+e)B + e^0. In view

of fi^l/2, g(B) =0 has two real roots Bi^B2. Again ju^l/2 insures

Pi<l. As P«(x)£r+ implies P^C+1^1, we must have B^B2.

On the other hand from (4.3), Sge^_1(l+«)_1- This contradicts

B^B2 in view of (l+€)(4p)-1^€M-1(l+«)_1- Q.E.D. This theorem

is not true for general m. For example, let arc cos (2€1/2)-1 = 18°,

M(e) = 10. Then

(x10 + 1) = (x2 + l)(x2 - 2x cos 18° + l)(x2 - 2x cos 54° + 1)

•(x2 + 2x sin 36° + l)(x2 + 2x sin 72° + 1).

The preceding suggests

Criterion 1. Given Pm(x)£J* = r+— Tq (verifiable by the ex-

tended Hurwitz theorem), find its canonical decomposition and the

ek corresponding to all quadratic factors of the type Qk (x, ek)=x2

— Akx + ekAl where Ak>0. Let € = minA e*. If M(e)=m, Pm(x)£7\-.

Also if Pm(x) has no real roots and M(e) > m — 2, Pm(x) £ 7V

4. Special cases. For m = 3, the extended Hurwitz criterion yields

aia2<0Oa3 as a NSC for P3(x)£r,-.

* An obvious sufficient condition that -P„(x)£7\ is that all differences of pairs of

exponents with nonzero coefficients a,- be distinct [2].
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Consider next the case w = 4, aOT = a4 = l. Then if ai^O, a NSC that

Pi(x)^T* is a3[aifl2 — ao-a3] <a\. Should ai = 0, then a3>0 or a3 =0,

al<4a0 is NS that P„(x)G7\CP*.
Define Q2{x) = x2 —a3x+a2 with ri<r2 the roots of Q2(x) =0. Then

if T* = Tr— Tg, we have

Theorem 5. Let P4(x)GP*. 7/a^4a2, (<), a NSC for P4(x)GPr*

•s 2/za< P4(—x) feawe a roo/ in (0, ri] or [r2, a3], (i« (0, a3]).

Proof. The only possible factorization  is P4(x) =(x+z) [x3+(a3

— z)x2 + ()2(z)x + ()3(z)]   where   Q3(z)   's   a   cubic   polynomial   and

P4( —z)=0,   0<z^a3,   (?2(z)2:0.   Also   if  these  conditions  obtain,

P4(x) G P*

Theorem 5 is hardly a satisfactory answer for the case w = 4 as

the criterion involves a 4th degree equation. However, it leads to the

more cumbersome but intrinsically simpler conditions of the following

theorems.

Theorem 6. Let P4(x)GP* and a\<ia2. If a3<aoall or a2 — 4~,a3!

>4~1a2a^1, P4(x)£7\. Further if a^a^1 <2~1a$ and a2 —4_1a3^2aia3_1

— 4aofl3~2, P4GP* awJ /Aere are two factorizations or one according as

—1 —2

(5 .1) #2  ^   #1^3     —   0003

ts or is not valid.

Theorem 7. ZeJ P4(x)£J* and afs^4a2. If az<aoa~[l, P4(x)G7\.

(i) 7/ 2-1a3>ao0i~\ a NSC for two, one, or no factorizations of P4(x)

within T+ is that both, just one, or neither of (5.1) and alai2+a2

^a^-ao-ai1 hold.

(ii) // r2>aoar1^2_1a3, P4(x)GP* (with just one factorization) or

Ti according as (5.1) holds or not.

(iii) // r2=aoar1 = 2_1a3, then P4(x)G7^ and there are two factori-

zations or one according as both (5.1) and a\>a2)[2ao — aja3] hold or not.

Proof of Theorems 6 and 7. By Theorem 5, a NSC that P4(x) G T*

is that there exist z in (0, a3] such that z~2Pt( — z) =0 and @2(z) 2:0.

But z~2P4( —z) =Q2(z)—7?(z) where R(z) =aiz~1 — a<>z~2. Hence, it is

NS that Q2{z) =R(z) 2:0 for some z in (0, a»]. A consideration of the

behavior of the graphs of these two functions yields the particular-

ized results. The condition in (iii) arises from an examination of the

slopes at z=aBar1. Q.E.D.
The relationships among the coefficients a,- are not exhausted by

the considerations of the last two theorems. The remaining cases can
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be dealt with but the conditions obtained would be no easier to verify

than that of Theorem 5.
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