THE TITCHMARSH SEMI-GROUP

G. L. KRABBE

Introduction. Let S be the set of all complex-valued functions defined on $\Omega = \{0, \pm 1, \pm 2, \cdots\}$. We suppose p > 1, and consider the space S_p of all members a of S such that $||a||_p = (\sum_{p=-\infty}^{\infty} |a_p|^p)^{1/p} < \infty$. The letters α and λ will henceforth denote complex numbers.

The transformation T_{α} is defined as follows: if $a \in S_p$, then $T_{\alpha}a$ is the member c of S satisfying

(1)
$$[T_{\alpha}a]_n = c_n = \sum_{\nu=-\infty}^{\infty} (-1)^{n+\nu} \frac{\sin \alpha\pi}{(n+\alpha-\nu)\pi} a_{\nu} \qquad (n \in \Omega).$$

For any a in S_p , we define Ga to be the member x of S such that

(2)
$$[Ga]_n = x_n = \sum_{\nu=-\infty}^{\infty} (-1)^{n+\nu} \frac{1}{n-\nu} a_{\nu}, \quad \nu \neq n \ (n \in \Omega).$$

M. Riesz [10] has shown that both T_{α} and G are bounded operators. An operator essentially identical to T_{α} was studied by E. C. Titchmarsh [12; 13] in the case $\alpha = 1/2$.

In this paper we prove that:

- (i) T_{α} is an entire function.
- (ii) $T_0 a = a$ and $T_{\alpha} T_{\lambda} a = T_{\alpha+\lambda} a$ for any a in S_p .
- (iii) The operator G is the infinitesimal generator of what we call the *Titchmarsh semi-group* $\{T_{\alpha}|\alpha\}$. Moreover $T_{\alpha} = \exp \alpha G$ for all complex α .

These results are derived from the following property (A_p) .

(A_p) There is a nondecreasing function f such that $||T_{\alpha}||_{p} \leq f(|\operatorname{Im} \alpha|)$.

If Im $\alpha = 0$, it is readily inferred from (ii) and (A_p) that T_{α} is weakly-almost-periodic in the sense of Lorch [6]; its spectrum $\sigma(T_{\alpha})$ is therefore on the circumference of the unit-circle.

Our basic lemmas depend heavily upon the methods developed in [12]. W. Ferrar [1] has verified a special case of (ii). The operator T_{α} forms the basis of an article by H. Hadwiger [2]; in E. Hille's review [4] of [2] is found the remark that (i) and (ii) hold when p=2. A corresponding generalization of [2] is made possible by our removal of this restriction. Among various applications of T_{α} we mention: inter-

Presented to the Society, June 19, 1954; received by the editors April 23, 1953 and, in revised form, May 10, 1954 and July 1, 1954.

¹ This follows from [6, p. 36]. We intend to show in a later article that $\sigma(iG) = [-\pi, \pi]$ and use these properties to illustrate a general theorem based on [6].

polation theory [1], fractional differentiation [2], and the derivation by Titchmarsh of the fundamental properties of the Hilbert transformation [12]. An extensive literature [3] deals with the operators obtained from (1) and (2) by imposing the conditions n>0, $\nu>0$. Some of the connections of this subject with problems in other fields are mentioned in [8; 7].

1. Preliminaries. As usual, $||T_{\alpha}||_p = \sup ||T_{\alpha}a||_p$; $||a||_p = 1$, $a \in S$. We shall consistently write p' = p/(p-1). Let t^{α} be the member of S such that t_n^{α} is the nth Fourier coefficient of $\exp(-i\theta\alpha)$. Thus

$$t_n^{\alpha} = (-1)^n \xi_{\alpha}/(n+\alpha)$$
 if $\xi_{\alpha} = (\sin \alpha \pi)/\pi$ and $n \neq -\alpha, n \in \Omega$;

moreover $t_{-\alpha}^{\alpha} = 1$ if $\alpha \in \Omega$. In case $a \in S_p$ and $b \in S_{p'}$, then b * a denotes the member x of S such that

$$[b*a]_n = x_n = \sum_{\nu=-\infty}^{\infty} b_{\nu} a_{n-\nu}$$
 when $n \in \Omega$.

Consequently $T_{\alpha}a = t^{\alpha} * a$. We shall show in §5 that Ga = d * a, where d_n is the derivative of t_n^{α} at $\alpha = 0$. If $m \in \Omega$ then $[T_m a]_n = a_{m+n}$, so that

(3)
$$T_0 a = a$$
 and $||T_m||_p = 1$ when $m \in \Omega$

The Parseval and Fischer-Riesz theorems yield immediately (see [10; 14])

(4)
$$||T_{\alpha}||_2 \leq \zeta(\alpha) = \exp(\pi |\operatorname{Im} \alpha|)$$
 and $||t^{\alpha}||_2 \leq \zeta(\alpha)$.

1.1 NOTATION. From now on, we denote by \mathcal{P}_p the set of all members c of S such that $c_n = 0$ for all |n| sufficiently large, and satisfying $||c||_p = 1$.

We say that $\phi(\alpha) \in \mathcal{F}$ if $\phi(\alpha) \in [0, \infty)$ and if moreover ϕ is a function such that

- (a) $\phi(\alpha)$ is bounded when $\alpha \in [0, 1]$,
- (b) there exists a nondecreasing function f mapping $[0, \infty)$ into itself, and satisfying $\phi(\alpha) \le f(|\operatorname{Im} \alpha|)$ whenever $\operatorname{Rl} \alpha = 0$.
- 1.2 Remark.² If $||x-y||_p \le h_1(\alpha) \in \mathcal{J}$ and $||x||_p \le h_2(\alpha) \in \mathcal{J}$, then $||y||_p \le h_3(\alpha) \in \mathcal{J}$.
 - 1.3 LEMMA. If $||T_{\alpha}||_{p} < \infty$, then (ii) holds.

PROOF. Suppose $a \in S_p$ and let K be an arbitrary pair (K_1, K_2) of members of Ω . We denote by $\{a; K\}$ the member x of S such that: $x_n = a_n$ if $K_1 < n < K_2$, and $x_n = 0$ otherwise $(n \in \Omega)$. Thus, if $n \in \Omega$,

² For convenience and brevity, the statement that there exists a function h such that $||z||_p \le h(\alpha)$ and $h(\alpha) \in \mathcal{J}$ will be expressed symbolically by writing $||z||_p \le h(\alpha) \in \mathcal{J}$.

$$[T_{\alpha}a]_n = \lim \left[T_{\alpha}\{a; K\}\right]_n \quad \text{as } K_1 \to -\infty, K_2 \to \infty.$$

By Hölder's inequality

$$| [T_{\alpha}c]_n | = | [t^{\alpha} * c]_n | \leq ||t^{\alpha}||_{p'} ||c||_{p}.$$

Hence, taking $c = T_{\lambda}a - T_{\lambda}\{a; K\} = T_{\lambda}(a - \{a; K\})$,

$$(6) | [T_{\alpha}(T_{\lambda}a)]_{n} - [T_{\alpha}(T_{\lambda}\{a;K\})]_{n} | \leq ||t^{\alpha}||_{p'} ||T_{\lambda}||_{p} ||a - \{a;K\}||_{p}.$$

It can easily be shown [10] that (ii) holds in the case p=2. But $\{a; K\} \in S_2$, and we can therefore replace, in (6), $T_{\alpha}T_{\lambda}\{a; K\}$ by $T_{\alpha+\lambda}\{a; K\}$. The conclusion is now obtained by taking $\lim K_1 \to -\infty$ and $\lim K_2 \to \infty$ of both sides of (6), using (5) and the fact that

$$\lim \|a - \{a; K\}\|_{p} = \lim \sum_{n=-\infty}^{K_{1}} |a_{n}|^{p} + \lim \sum_{n=K_{2}}^{\infty} |a_{n}|^{p} = 0.$$

2. Basic lemmas. In the present section, we prove that (A_p) holds for any p in $M = \{2, 2^2, 2^3, \cdots\}$. We henceforth write s' = s/(s-1) and call d the member of S such that $d_0 = 0$, $d_n = (-1)^n/n$ when $n \neq 0$. If $a \in S$ and $b \in S$, it will be convenient to define ab and a^2 by $[ab]_n = a_n b_n$ and $[a^2]_n = a_n^2$ respectively. Note that if s > 1

(7)
$$||ab||_s \le ||a||_{2s} ||b||_{2s} \text{ and } ||a^2||_s = ||a||_{2s}^2.$$

2.1 LEMMA. Suppose $s \ge 2$ and $\tau = 1, 2$. Then

$$\|\{(t^{\alpha})^{\tau}d\} * x\|_{s} \leq \Psi_{s}^{(\tau)}(\alpha) \in \mathcal{F} \qquad \text{when } x \in \mathcal{P}_{s}.$$

PROOF. If $z = \{(t^{\alpha})^{\tau}d\} * x$ and $n \in \Omega$, then by Hölder's inequality

$$|z_n|^{s} \leq ||d||_{s'}^{s} \sum_{r} |t_r^{\alpha}|^{sr} |x_{n-r}|^{s} = ||d||_{s'}^{s} \sum_{\theta} |x_{\theta}|^{s} |t_{n-\theta}|^{sr}.$$

Now $t_{n-\theta}^{\alpha} = t_n^{\alpha-\theta}$. We therefore infer from (4) that

$$||z||_{\mathfrak{s}} \leq ||d||_{\mathfrak{s}'} \left(\sum_{\theta} |x_{\theta}|^{\mathfrak{s}} ||t^{\alpha-\theta}||_{\mathfrak{s}\tau}^{\mathfrak{s}\tau} \right)^{1/\mathfrak{s}} \leq ||d||_{\mathfrak{s}'} ||x||_{\mathfrak{s}} |\zeta(\alpha)|^{\tau}.$$

We conclude the proof by observing that $|\zeta(\alpha)| \in \mathcal{I}$.

2.2 LEMMA. Suppose $s \ge 2$ and $\tau = 1, 2$. Then

$$\|[\{(t^{\alpha})^{\tau-1}\xi_{\alpha}d\}*x]-[(t^{\alpha})^{\tau}*x]\|_{\bullet} \leq \Phi_{\bullet}^{(\tau)}(\alpha) \in \mathcal{F} \qquad \text{when } x \in \mathcal{P}_{\bullet}$$

PROOF. Call $y = \{(t^{\alpha})^{\tau-1}\xi_{\alpha}d\} - (t^{\alpha})^{\tau}$. It is easily checked that

³ Since $s\tau \ge 2$, and thus $||t^{\alpha-\theta}||_{s\tau} \le ||t^{\alpha-\theta}||_2 \le \zeta(\alpha)$.

$$y_n = (-1)^n \alpha (t_n^{\alpha})^{\tau} \cdot d_n - (t_0^{\alpha})^{\tau} \cdot t_n^{\alpha} \qquad (n \in \Omega),$$

so that if $x \in \mathcal{P}_s$,

$$||y * x||_{\mathfrak{s}} \leq |\alpha| \cdot ||\{(t^{\alpha})^{\mathsf{T}}d\} * x||_{\mathfrak{s}} + |t_{0}^{\alpha}|^{\mathsf{T}} \cdot ||t^{0} * x||_{\mathfrak{s}}.$$

But $t^0 * x = x$, $|t_0^{\alpha}|^{\tau} \in \mathcal{I}$, and by 2.1

$$||y * x||_{\mathfrak{s}} \leq |\alpha| \Psi_{\mathfrak{s}}^{(\tau)}(\alpha) + |t_0|^{\tau} = \Phi_{\mathfrak{s}}^{(\tau)}(\alpha) \in \mathfrak{I}.$$

2.3 LEMMA. If $r \ge 2$ there exists a function g_r with $g_r(\alpha) \in \mathcal{F}$ and such that for all a in \mathcal{P}_{2r}

$$||T_{\alpha}a||_{2r}^{2}-2\cdot||T_{\alpha}||_{r}(||T_{\alpha}a||_{2r}+g_{r}(\alpha))\leq f_{r}(\alpha)\in\mathcal{F}.$$

PROOF. Suppose $a \in \mathcal{P}_{2r}$ and call $h = (T_{\alpha}a)^2 - [(t^{\alpha})^2 * a^2]$. We first note that

(8)
$$h_n = \sum_{\mathbf{r}} \sum_{\theta \neq \mathbf{r}} t_{\mathbf{r}}^{\alpha} t_{\mathbf{r}}^{\alpha} a_{n-\mathbf{r}} a_{n-\mathbf{\theta}}.$$

By (7), $||a^2||_r = ||a||_{2r}^2 = 1$, so that $a^2 \in \mathcal{P}_r$. We can therefore conclude from 2.2, 2.1, and 1.2 that $||(t^\alpha)^2 * a^2||_r \le f_r(\alpha) \in \mathcal{F}$. From the definition of h now follows that

(9)
$$||T_{\alpha}a||_{2r}^2 - ||h||_r \leq f_r(\alpha) \in \mathcal{J}.$$

Suppose $x \in S$; if we define -x by $[-x]_n = (-1)^n x_n$, then $||-x||_r = ||x||_r$ and (-z) * x = -[z * (-x)]. This enables us to derive from (7) that

(10)
$$||(-t^{\alpha}) * (ac)||_{r} = ||T_{\alpha}(-ac)||_{r} \le ||T_{\alpha}||_{r} ||ac||_{r} \le ||T_{\alpha}||_{r} ||c||_{2r}.$$

It is immediately verified that $t_{\nu}^{\alpha}t_{\theta}^{\alpha} = \xi_{\alpha}([-t^{\alpha}]_{\nu}d_{m} + [-t^{\alpha}]_{\theta}d_{-m})$ if $m = \theta - \nu \neq 0$ so that, by (8),

$$h_n = 2 \sum_{\mathbf{r}} [-t^{\alpha}]_{\mathbf{r}} a_{n-\mathbf{r}} \sum_{m} \xi_{\alpha} d_m a_{(n-\mathbf{r})-m} = 2 [(-t^{\alpha}) * (a \{ \xi_{\alpha} d * a \})]_n.$$

Using now (10) and 2.2,

$$||h||_r \leq 2||T_\alpha||_r ||\xi_\alpha d * a||_{2r} \leq 2||T_\alpha||_r (||t^\alpha * a||_{2r} + \Phi_{2r}^{(1)}(\alpha)).$$

The conclusion follows from (9).

2.4 FINAL LEMMA. Whenever $||T_{\alpha}||_r \leq \phi_r(\alpha) \in \mathcal{J}$ for some $r \geq 2$, then $||T_{\alpha}||_{2r} \leq \phi_{2r}(\alpha) \in \mathcal{J}$.

PROOF. If $a \in \mathcal{P}_{2r}$ and $x = T_{\alpha}a$, then by 2.3

$$||x||_{2r}^2 - 2\phi_r(\alpha)||x||_{2r} \leq 2\phi_r(\alpha) \cdot g_r(\alpha) + f_r(\alpha) = h_1(\alpha) \in \mathcal{J}.$$

Adding $(\phi_r(\alpha))^2$ to both sides of the inequality,

$$\left\{\left\|x\right\|_{2r}^{2}-\phi_{r}(\alpha)\right\}^{2}\leq\left(\phi_{r}(\alpha)\right)^{2}+h_{1}(\alpha)=h_{2}(\alpha)\in\mathcal{J}.$$

This yields the conclusion

$$||T_{\alpha}a||_{2r} = ||x||_{2r} \le \phi_r(\alpha) + (h_2(\alpha))^{1/2} = \phi_{2r}(\alpha) \in \mathcal{F}.$$

2.5 THEOREM. (As) holds for any s in M.

PROOF. From (4) and 2.4 we can conclude that for any s in M, $||T_{\lambda}||_{s} \leq \phi_{s}(\lambda) \in \mathcal{I}$. Set $\alpha = \alpha^{0} + \alpha' + i\alpha''$, where $\alpha^{0} \in \Omega$, $\alpha' \in [0, 1]$, and $\alpha'' \in (-\infty, \infty)$; then by 1.3 and (3),

$$||T_{\alpha}||_{\mathfrak{s}} = ||T_{\alpha} T_{\alpha' + i\alpha'}||_{\mathfrak{s}} \leq ||T_{\alpha' + i\alpha'}||_{\mathfrak{s}} \leq \phi_{\mathfrak{s}}(\alpha') ||T_{i\alpha'}||_{\mathfrak{s}}.$$

Now $\phi_s(\lambda) \in \mathcal{F}$, $\alpha' \in [0, 1]$, and $\phi_s(\alpha')$ is therefore bounded by some number k. Moreover, $||T_{i\alpha''}||_s \leq \phi_s(i\alpha'')$ and we infer from 1.1(b) and Rl $i\alpha'' = 0$ that there exists a nondecreasing function f such that $\phi_s(i\alpha'') \leq f(|\alpha''|)$. Collecting results: $||T_{\alpha}||_s \leq k \cdot f(|\alpha''|)$.

3. The main theorems.

3.1 LEMMA. If p>1, there exists a member s of M such that $||T_{\alpha}||_p \le ||T_{\alpha}||_s$.

We have already indicated that T_{α} is essentially the operator studied by Titchmarsh [12] in the case $\alpha = 1/2$; 3.1 is the generalization to complex α of the statement (2.47) found in [12, p. 332]. We omit the verification of the fact that every step in Titchmarsh's proof of (2.47) can be directly extended, and quote his assertion [12, p. 323] that "the theory (of T_{α}) presents no features which do not occur in the case $\alpha = 1/2$."

THEOREM I. For any p>1 there exists a nondecreasing function f such that $||T_{\alpha}||_p \le f(|\operatorname{Im} \alpha|)$ for any complex α .

PROOF. From 3.1 we have $||T_{\alpha}||_{p} \leq ||T_{\alpha}||_{s}$ for some s in M. But by 2.5, there exists a nondecreasing f such that $||T_{\alpha}||_{s} \leq f(|\operatorname{Im} \alpha|)$. The conclusion follows.

THEOREM II. If p>1, then $T_{\alpha}(T_{\lambda}a)=T_{\alpha+\lambda}a$ for any a in S_{p} .

This is an obvious consequence of 1.3 and Theorem I.

4. Analyticity of T_{α} . Let us denote by \mathfrak{E}_{p} the set of all bounded linear transformations of S_{p} into itself. We say with Hille [5, p. 53] that a member V_{α} of \mathfrak{E}_{p} is an entire function if $\phi(V_{\alpha}x)$ is an entire

⁴ By 1.1(a).

function of α for every choice of x in S_p , and for every ϕ in the adjoint space S_p^* .

In such a case, there exists [5, p. 53] a member V'_{α} of \mathfrak{E}_{p} such that

(11)
$$V_{\alpha}' x = \lim_{\epsilon \to 0} \left\{ V_{\alpha + \epsilon} x - V_{\alpha} x \right\} \frac{1}{\epsilon} \quad \text{for all } x \text{ in } S_{p}.$$

Moreover

(12)
$$[V_{\alpha}'x]_n = \frac{d}{d\alpha} [V_{\alpha}x]_n \qquad \text{for every } n \text{ in } \Omega.$$

We derive (12) from (11) by observing that for any ϕ in S_p^*

$$\phi(V_{\alpha}'x) = \lim_{\epsilon \to 0} \left\{ \phi(V_{\alpha+\epsilon}x) - \phi(V_{\alpha}x) \right\} \frac{1}{\epsilon} = \frac{d}{d\alpha} \phi(V_{\alpha}x).$$

Suppose $n \in \Omega$; the above holds in particular for the member ϕ_n of S_p^* defined by $\phi_n(c) = c_n$ $(c \in S_p)$.

THEOREM III. The operator T_{α} is an entire function, and for any a in S_{x} we have

(13)
$$[T_{\alpha}'a]_{n} = \sum_{r=-\infty}^{\infty} \left(\frac{d}{d\alpha}t_{r}^{\alpha}\right)a_{n-r} \quad \text{when } n \in \Omega.$$

PROOF. It is easily seen [1, p. 231] that the series representing $[T_{\alpha}a]_n$ is uniformly convergent in any bounded region. Hence $[T_{\alpha}a]_n$ is an entire function of α , and the series in (13) represents therefore the derivative of $[T_{\alpha}a]_n$.

From (12) now follows that the theorem will be proved once we have established that T_{α} is an entire function. To that effect, we note that any closed and bounded region \mathcal{D} can be included in a suitable square $|\operatorname{Im} \alpha| < \tau$, $|\operatorname{RI} \alpha| < \tau$ and therefore, by Theorem I

From the analyticity of $[T_{\alpha}a]_n = \psi_{\alpha}^{(n)}(a)$ follows that the members $\psi_{\alpha}^{(n)}$ of S_p^* are analytic. We now refer to [11] for the fact that this allows us to deduce from (14) the analyticity of T_{α} in the arbitrary region \mathcal{D} . This completes the proof.

5. The generator. Since \mathfrak{E}_p forms a Banach space with norm $\|\cdot\|_p$, we can define $\exp \alpha G$ for any G in \mathfrak{E}_p . The continuity of T_α is readily inferred [5, p. 53] from Theorem III. Since further $T_0 a = a$ and $T_\alpha T_\lambda = T_{\alpha+\lambda}$, we can conclude from [9] that, when α is real

(15)
$$T_{\alpha} = \exp \alpha G, \qquad \text{where } G = T'_{0}.$$

Both T_{α} and $\exp \alpha G$ being entire functions, we can extend the validity of (15) to all complex values of α by analytic continuation [5, p. 58]. From (15) we see that $G \in \mathfrak{E}_p$; G is the infinitesimal generator of the analytical group $\{T_{\alpha} | \alpha\}$.

The definition of t^{α} readily yields⁵

$$\left[\frac{d}{d\alpha}t_n^{\alpha}\right]_{\alpha=0}=d_n \qquad (n\in\Omega).$$

It now follows from (15) and (13) that

$$[Ga]_n = \sum_{p=-\infty}^{\infty} d_p a_{n-p} = [d*a]_n \quad (a \in S_p, n \in \Omega).$$

Hence G is identical to the operator defined by (2); this fulfills the aims set forth in the introduction.

BIBLIOGRAPHY

- 1. W. L. Ferrar, On the consistency of cardinal function interpolation, Proc. Roy. Soc. Edinburgh vol. 47 (1927) pp. 230-242.
- H. Hadwiger, Der Begriff der Ultrafunktion, Vierteljahrsschrift der Naturforsch. Gesellschaft Zürich vol. 92 (1947) pp. 31–42.
- 3. G. H. Hardy, J. E. Littlewood, and G. Pólya, *Inequalities*, Cambridge, 1934, pp. 212-214 and 225-227.
 - 4. E. Hille, Mathematical Reviews vol. 8 (1947) p. 569.
- 5. ——, Functional analysis and semi-groups, Amer. Math. Soc. Colloquium Publications, vol. 31, 1948.
- 6. E. R. Lorch, The integral representation of weakly almost periodic operators in reflexive vector spaces, Trans. Amer. Math. Soc. vol. 49 (1941) pp. 18-38.
- 7. W. Magnus, Über einige beschrünkten Matrizen, Arch. Math. vol. 2 (1951) pp. 405-412.
- 8. ——, On the spectrum of Hilbert's matrix, Amer. J. Math. vol. 72 (1950) pp. 699-704.
- 9. M. Nagumo, Einige analytische Untersuchungen in linearen metrischen Ringen, Jap. J. Math. vol. 13 (1936) p. 72.
 - 10. M. Riesz, Sur les fonctions conjuguées, Math. Zeit. vol. 27 (1927) pp. 241-243.
- 11. A. E. Taylor, Linear operations which depend analytically on a parameter, Ann. of Math. (2) vol. 39 (1938) p. 585, §4.
- 12. E. C. Titchmarsh, Reciprocal formulae involving series and integrals, Math. Zeit. vol. 25 (1926) pp. 321-347.
- 13. ——, Proc. London Math. Soc. (2) vol. 22 No. 5 iii (1924), also vol. 26 (1927) pp. 1–11, and J. London Math. Soc. vol. 3 (1928) pp. 81–83.
- 14. J. D. Weston, On the bounds of a bilinear form related to Hilbert's, Quart. J. Math. Oxford Ser. (2) vol. 3 (1952) p. 117.

University of California, Berkeley

⁵ See §2 for the definition of d.