
THE TITCHMARSH SEMI-GROUP

G. L. KRABBE

Introduction. Let S be the set of all complex-valued functions de-

fined on Q= {0, +1, +2, • • • }. We suppose p>l, and consider the

space Sp of all members a of 5 such that 11a\\p = ( £"_ _ „ | a, \ ")1,p < °°.

The letters a and X will henceforth denote complex numbers.

The transformation Ta is defined as follows: if a(E.Sp, then Taa is

the member c of S satisfying

r A sin ««■
(1) [Taa)n = cn =   £  (-1)"+" —- a,        (n G 0).

,.—oo (» + a — v)ir

For any a in 5P, we define Ga to be the member x of 5 such that

(2) [Ga]. = xn =    X)  (-1)"+* ■-«,,       v^«(«Gfi).
,=-oo n — v

M. Riesz [10] has shown that both Ta and G are bounded oper-

ators. An operator essentially identical to Ta was studied by E. C.

Titchmarsh [12; 13] in the case a = 1/2.

In this paper we prove that:

(i)  Ta is an entire function.

(ii) Toa=a and TaT\a = Ta+\a for any a in Sp.

(iii) The operator G is the infinitesimal generator of what we call

the Titchmarsh semi-group {Ta\a}. Moreover J'a = exp aG for all

complex a.

These results are derived from the following property (Ap).

(Ap) There is a nondecr easing function f such that || Ta\p s=/( | Im a |).

If Im a = 0, it is readily inferred from (ii) and (Ap) that Ta is

weakly-almost-periodic in the sense of Lorch [6]; its spectrum

o,(Ta) is therefore on the circumference of the unit-circle.1

Our basic lemmas depend heavily upon the methods developed in

[l2]. W. Ferrar [l ] has verified a special case of (ii). The operator Ta

forms the basis of an article by H. Hadwiger [2]; in E. Hille's review

[4] of [2] is found the remark that (i) and (ii) hold when p = 2. A cor-

responding generalization of [2] is made possible by our removal of

this restriction. Among various applications of T„ we mention: inter-
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1 This follows from [6, p. 36]. We intend to show in a later article that a(iG)

= [ —x, w] and use these properties to illustrate a general theorem based on [6].
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polation theory [l], fractional differentiation [2], and the derivation

by Titchmarsh of the fundamental properties of the Hilbert trans-

formation [12]. An extensive literature [3] deals with the operators

obtained from (1) and (2) by imposing the conditions w>0, v>0.

Some of the connections of this subject with problems in other fields

are mentioned in [8; 7].

1. Preliminaries. As usual, ||£a||p = sup ||r«a]|,; ||a||p = l, a£S. We

shall consistently write p' = p/(p — l). Let ta be the member of S such

that t% is the wth Fourier coefficient of exp ( — ida). Thus

tn = (—1)"£0/(» + a)     if     £a = (sin air)/-*    and   n 9^ — a, n £Q;

moreover f-a = \ if a£Q. In case a(ESp and &££„', then b*a denotes

the member x of S such that

[b* a]n = xn =   £ b*an-r when n £ 12.
»■=—00

Consequently Taa=ta*a. We shall show in §5 that Ga=d*a, where

dn is the derivative of /J at a = 0. If w£i2 then [rma]„ = am+n, so that

(3) T0a = a   and    ||rm||P = 1 when m £ £2.

The Parseval and Fischer-Riesz theorems yield immediately (see

[10; 14])

(4) ||ra||2 g f(a) = exp (t I Im a | )    and    \\t°\\2 ̂  f(a).

1.1 Notation. From now on, we denote by 4PP the set of all mem-

bers c of 5 such that cn — 0 for all | n \ sufficiently large, and satisfying

||c||, = l.
We say that <f>(a) £7 if 4>{a) £ [0, <x>) and if moreover # is a function

such that

(a) <p(a) is bounded when a£ [0, l],

(b) there exists a nondecreasing function/ mapping [0, w) into

itself, and satisfying <£(a) g/(| Im a|) whenever Rl a = 0.

1.2 Remark.2   If  \\x-y\\p^h(a)Gj and   ||x||pgfc2(a)£7,   then

IHI^*t(«)ey.
1.3 Lemma.  r/||ro||p< », ^ew (ii) ^0/^5.

Proof. Suppose a£5p and let K be an arbitrary pair (£1, £2) of

members of $2. We denote by {a; K\ the member x of 5 such that:

x„ = o» if £i<«<£2, and x„=0 otherwise (n£Q). Thus, if w£fl,

1 For convenience and brevity, the statement that there exists a function h such

that ||z||pgA(a) and A(«)£7 will be expressed symbolically by writing||z||,gA(a)£7.
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(5) [Ttta]n = lim [Ta{a; K}]„ as Ki -> - », X2 -» oo.

By Holder's inequality

I [r«c].| =1 [t**c]n\ ^\\i"\\P-\\c\\p-

Hence, taking c=T\a — T\{a; K} = 7\(a — {a; K.}),

(6) | [7\,(rxa)]„- [Ta(Tx{a;K\)]n\   £ ||HWMU|a - {a; K}\\P.

It can easily be shown [10] that (ii) holds in the case p = 2. But

{a; K\^Si, and we can therefore replace, in (6), TaT\{a; K) by

Ta+\{a; K\. The conclusion is now obtained by taking lim Ki—>— oo

and lim K%—> oo of both sides of (6), using (5) and the fact that

Ki oo

lim||a- {a;tf}||p = lim  £   |a„|" + lim  £   |a»|p = 0.
n=—oo n=Xj

2. Basic lemmas. In the present section, we prove that (Ap) holds

for any p in M= [2, 22, 23, • • • }. We henceforth write s'=s/(s— 1)

and call a" the member of S such that d0=0, dn = (—l)n/n when

W5^0. If aES and &£5, it will be convenient to define ab and a2 by

[a&]„=a„&„ and [a*]»=aj| respectively. Note that if s>l

(7) ||fflj||. =§ IMUIHU and Ik ll« = IMU-
2.1 Lemma. Suppose st,2 and t = 1, 2. 7%e»

|| {(t")Td} * x\\, = ¥.(T)(«) 6.7 w*e» * E <P..

Proof. If z= {(ta)Td} *x and «Efl, then by Holder's inequality

I I*    ^   II   .11*   TT"*    I     a l*T I I* II   .11*    ^~*    I I8 I     a       l,r

I *»|     ̂    IMI»'2_)   I '»   I      I  *«-r|     =  |M|«' Z)   I   ** \    I 'n-»l    •» t

Now %_) = %-". We therefore* infer from (4) that

ii4 = imi.<(i: i*.nr'ii::)1"^NMNi.ir(«)r.

We conclude the proof by observing that | f(a) | TG.J-

2.2 Lemma. Suppose s^2 and r = 1, 2. 77te«

II [{(ff^at} * x] - [(*")'. *]||. g $.<T>(«) G 7 wfew * G <P..

Proof. Call y={(ta)r~1^ad} -{ta)r. It is easily checked that

• Since sr^2, and thus ||«a-»||ws||««-»||,gf(a).
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yn - (- l)"a(C)T ■ dn - (h)T ■ tn (n £ 12),

so that if x£'Ps,

iiy**n»^ i«i ■ii{(<a)Trf}**ii.+1^or-1U°*^||—

Butt**x=x, |/j|T£7, and by 2.1

||y* 4 £ I «| *.(T,(«) + I /of = *.(r)(«) G 7-

2.3 Lemma. If r ^ 2 /ftere exis/s a function gr with gr(a) £7 aw</ swc&

that for all a in cP2r

\\Taa\\l - 2-||r.||r(||r(,a||Jr + fr(a)) £/,(«) £ J.

Proof. Suppose a£<P2r and call h = (Taa)2- [(f)2* a2]. We first

note that

(8) hn = £ £ /, lean-,an-i.
w     Mr

By (7), ||a2||r = ||a||i = ll so that a2£<Pr. We can therefore conclude

from 2.2, 2.1, and 1.2 that ||(<<,)2*a2||r^/r(a)£7. From the definition

of h now follows that

(9) ||r«o||L-||*||rs/,(«)€ 7.

Suppose x£5; if we define -x by [-x]„ = ( —l)nx„, then ||-x||r = ||x||r

and (—z)*x= — [z* (—x)]. This enables us to derive from (7) that

(io)     ||(-/").(ac)||r = ||r„(-oc)||r 22 ||ra||r||fle||r g ||ra||ry2r.

It is immediately verified that 0«=?«(H°]A+H"W-*) if
m=e-V9£Q so that, by (8),

hn = 2 £ [-t"]van-, £M»J(w)-« = 2[(-/°)*(o{f«<i*ff})]n.

Using now (10) and 2.2,

||A||r S 2||rB||r||W.a||Jr ^ 2||ra||r(||<\o||Jr + *£>(a)).

The conclusion follows from (9).

2.4 Final   lemma.   Whenever   ||r«||r^$r(a)£7 for   some   r = 2,

then ||ra||2rg#2r(a)£7-

Proof. If a£^P2r and x = Taa, then by 2.3

||x||l - 2*r(a)||*||*. ^ 24>r(a)-gr(a) + fr(a) = h(a) £ J.
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Adding (<£r(a))2 to both sides of the inequality,

{||*||l - *r(«)}2 ^ (*r(a))2 + Ai(a) - A,(a) € 7

This yields the conclusion

||r„o||2r = ||*||2r ^ 4>M + (*,(«))»'» = <k(«) G 7

2.5 Theorem. (A.) holds for any s in M.

Proof. From (4) and 2.4 we can conclude that for any s in M,

||rx||.g0.(X)e7 Set a=a°+a'+ia", where a°£tt, o'G[0, l], and

«"£(- oo, oo); then by 1.3 and (3),

||r.||. = ||raor«.+.v'||. ^ ||iv+fa»||. = *.ry)||r,...||..

Now 0,(X)£7> «'G[0, l], and #,(o:') is therefore4 bounded by some

number k. Moreover, || 7\v||.3s#»(*«") and we infer from 1.1(b) and

Rl ia" = 0 that there exists a nondecreasing function / such that

<j>.{ia")^f(\a"\). Collecting results: ||r«||.£*-/(|o"|).

3. The main theorems.

3.1 Lemma. If p>\, there exists a member s of M such that IIjHJL

=l|r.||..
We have already indicated that Ta is essentially the operator stud-

ied by Titchmarsh [12] in the case a = 1/2; 3.1 is the generalization

to complex a of the statement (2.47) found in [12, p. 332]. We omit

the verification of the fact that every step in Titchmarsh's proof of

(2.47) can be directly extended, and quote his assertion [12, p. 323]

that "the theory (of Ta) presents no features which do not occur in

the case a = 1/2."

Theorem I. For any p>\ there exists a nondecreasing function f

such that || ra||p^/(| Im a\) for any complex a.

Proof. From 3.1 we have ||ra||P^||Ta\\, for some s in M. But by

2.5, there exists a nondecreasing/ such that HraH.iS/d Im a\). The

conclusion follows.

Theorem II. If p>l, then Ta(Txa) = Ta+\afor any a in SP.

This is an obvious consequence of 1.3 and Theorem I.

4. Analyticity of Ta. Let us denote by @p the set of all bounded

linear transformations of Sp into itself. We say with Hille [5, p. 53]

that a member Va of @p is an entire function if <f>{ Vax) is an entire

'By 1.1(a).
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function of a for every choice of x in Sp, and for every <f> in the adjoint

space S*.

In such a case, there exists [5, p. 53] a member V'a of @P such that

r )   1
(11) Va x = lim {Va+lx — Vax) — for all x in Sp.

t->o e

Moreover

(12) [Vi x\n = — [Vax]n for every n in 12.
da

We derive (12) from (11) by observing that for any <f> in S*

<b(V:x) = lim {<b(Va+tx) - <t>(Vax)\ — =—<b(Vax).
«->o *       da

Suppose «£Q; the above holds in particular for the member <f>n of 5*

defined by <j>n(c) = c„ (c£.Sp).

Theorem III. The operator Ta is an entire function, and for any a in

Sp we have

(13) [Tla\n=   £  (— t,\an-, whenn&Q.
>.=-«. \da   /

Proof. It is easily seen [l, p. 231] that the series representing

[£aa]n is uniformly convergent in any bounded region. Hence [T„a]n

is an entire function of a, and the series in (13) represents therefore

the derivative of [£««]„.

From (12) now follows that the theorem will be proved once we

have established that Ta is an entire function. To that effect, we note

that any closed and bounded region D can be included in a suitable

square | Im a\ <t, \ Rl a\ <r and therefore, by Theorem I

(14) || r«|| p ^ /(| Im a | ) g f(r) for all a in <D.

From the analyticity of [£„a]n=^'in)(a) follows that the members

yf/^ of S* are analytic. We now refer to [ll] for the fact that this

allows us to deduce from (14) the analyticity of Ta in the arbitrary

region £>. This completes the proof.

5. The generator. Since Gjp forms a Banach space with norm || ||P,

we can define exp aG for any G in (§„. The continuity of Ta is readily

inferred [5, p. 53] from Theorem III. Since further Tt>a=a and

TaT\ = Ta+\, we can conclude from [9] that, when a is real
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(15) Ta = exp aG, whereG = TS.

Both Ta and exp aG being entire functions, we can extend the

validity of (15) to all complex values of a by analytic continuation

[5, p. 58]. From (15) we see that G£(SP; G is the infinitesimal gener-

ator of the analytical group {Ta \ ol }.

The definition of t" readily yields6

| — fA      = dn (n £ 0).
Lda   Ja_o

It now follows from (15) and](13) that

00

]Ga]n =   23 dran~, = [d* a]„      (a £ Sp, n £ $2).

Hence G is identical to the operator defined by (2); this fulfills the

aims set forth in the introduction.
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