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1. Introduction. We consider a spatially and temporally homo-

geneous separable Markov process x, with the transition probability

function

P(s, t, A) = Prob (x,+„0 E A/xH = £),

which will be assumed to satisfy the following conditions:

(1.1) P(s,S\A) =  f p(s,x-Z)dx.
J A

There exists a positive function k(t) tending to infinity with t such

that

k(t + a)
(1.2) lim-■— = 1 for any constant a,

(-.»     k(t)

(1-3) t-^T=™,
n-l   k(n)

(1.4) k(t)p(t, u) = C, a constant independent of I and u.

(1.5) For fixed u,

lim k(t)p(t, u) = 1,

and
(1.6) For fixed u, p(t, u) is a continuous function of I for / different

from zero.

The above conditions on the transition function are suggested by

applications to the Brownian motion and, in the discrete case, to

sums of independent random variables belonging to the domain of

attraction of symmetric stable laws. There are Markov processes

besides the Brownian motion for which conditions (1.1) to (1.6) are

fulfilled, e.g. the Cauchy process with

p(t, u) = tir-^t2 + ra2)-1.

The main object of this paper is to prove an ergodic or "equidis-

tribution" property of the Brownian motion process, a weak form of
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which was proved in [l]. The problem for discrete Markov chains

has been studied by Harris and Robbins [2]. The method adopted

here is not a generalization of their method for the continuous case

but relies on the specific properties of the density function assumed

in (1.1) to (1.6). The reason for this approach lies firstly in the fact

that we are primarily concerned here with the Brownian motion.

Secondly, in the case of sums of independent random variables be-

longing to the domain of attraction of symmetric stable laws, we are

able with our method to obtain a necessary and sufficient condition

for equidistribution in terms of the norming constants. More specific

comments will be made in §5.

From (1.1), (1.4), and (1.5) it is easily verified that for fixed £ and

for fixed linear bounded Borel set A,

(1.7) limP(s, £;A) = 0,

while

(1.8) f   P(s, b A)dZ = 1(A),
J -00

/ being Lebesgue measure. Thus the Markov processes we consider

admit an infinite invariant measure (see [2]).

2. Definition of the measure m. Let ft be the space of real functions

x„(— °o<s<°°), F the field of finite unions of cylinders of the form

(2.1) W = [x,0EA0, • • • , x.kEAk],

and B(F) the Borel extension of F. Here and in the sequel the sets

which appear within the braces in (2.1) are linear bounded Borel sets

and the suffixes under the letter x are arranged in increasing order of

magnitude. For sets of the form (2.1) let Q(W/xB„=^) denote the

conditional probability of W given x,0 = £. Then

(2.2) m(W) =  fCQ(W/x,a = 0d^
J —00

defines m as a measure over F. Just as in the discrete case [2], since

ft itself is the denumerable union of sets in F of finite wi-measure,

m can be extended uniquely to B(F) by the Kolmogorov extension

theorem. If IF is a cylinder, (2.2) defines m(W) in a unique manner

in the sense that the right side of (2.2) gives the same value if so is

replaced by so , where 0<so' ^so. We now define a group Tt (— °° <t

< 00) of coordinate shift transformations, i.e.,

(2.3) T,x. = x,+t.
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We shall denote the corresponding set transformation by the same

letter (see [3, p. 453]). It is easy to show that for WEB(F),

(2.4) m(TtW) = m(W).

For later purposes we need the following

Lemma. If V and W are Borel cylinders of finite measure, then

m(VTtW) is a continuous function of t for t9*0.

If V, WEF, the proof follows on a successive application of the

Lebesgue dominated convergence theorem. Its extension to F,IF

EB(F) is straightforward. For instance if VEF and WEB(F), let

WtEF be such that

m(W - Wt) + m(Ws - W) < 8.

Then from the relation

\m(V-TtW) - m(V-TTW)\   g  | m(V ■ TtW) - m(V ■ T,WS) |

+ \m(V-TtWi) - m(V-TTWs)\

+ | m(V- TTW) - m(V- TTWS) I

we have

lim m(V-TtW) = m(V-TTW) (t9*0).
|->T

We do not need the continuity of m(V■ TtW) at t = 0 for our purpose

and indeed it may not be obtained in many cases.

In the next section we prove two theorems which enable us to

apply the continuous form of Hopf's ergodic theorem [4, pp. 53-54].

3. Absence of the dissipative part and metric transitivity of Tt.

Theorem 1. The dissipative part of fi has zero m-measure.

Proof. Let V, WEF be of positive finite measure. Then

(3.1) lim k(t)m(V-TtW) = m(V)m(W).
(—+00

Before proving (3.1) we make two remarks,

(i) (3.1) holds trivially if the right side is zero.

(ii) If

(3.2) m(V ■ TtW) = 0 for all sufficiently large /,

then with IF as in (2.1) and

F = [xUo E Bo, ■ ■ ■ , xUr E Br],
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we have for all large t

k(t)m(V-TtW) = k(t)m(W-T-,V)

k(t) p       c
" 777^-7     *     p(51 ~ 5o-*; d^ ■ ' •

*(< + wo - St) "No    J^
(3.3)

JP(s* — Sk-i, f*-i; rfjft)

/ft(2 + Mo — Jt)p(/ + Mo — Sk, rj — £&)

Bo

■ h(ri)dr),

where h(n) = fBlP(ui — Uo, if, drj) • ■ ■ fBkP(uk — uk^i, i]k-i; dnk).

On account of (3.2) the right side of (3.3) is zero, which implies

that either

m(V) = 0,

or that

I   k(l + mo — sk)p(l + Mo — Sk, v — £k)h(ri)dii = 0

for a.e. £* in Ak (Lebesgue measure).

But from (1.5) for every fixed x,

k(t + Mo — si)p(t + Mo — sk, x) > 0 for all sufficiently large t.

Hence either Bo is of zero measure, or

k(-n) = 0 for a.e. t] in Bo.

Either of these conclusions implies m(W)=0. Hence under (3.2) we

have

(3.4) m(V)m(W) = 0.

In order to prove (3.1) when V and W are F-sets of positive finite

measure it is enough to make /—>oo on the right side of (3.3) and

apply (1.4) and (1.5).
Let V, Wj (j = l, 2, ■ ■ ■ )EF be of positive finite measure and let

M= 227-iWj. From (3.1)

lim k(t)m( 22 WrT-tV) = m( 22wAm(V)

^ m(Wi)m(V) > 0.
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Hence for every N and all sufficiently large t,

k(t)m( 22 Wj T-tV\ = £ > 0.

Making 2V—>•» we obtain

(3.5) k(t)m(V- T,M) ^ K > 0 for all large I.

(3.5) remains true for every MEB(F) of finite measure, for then there

exists a set M0 which is a denumerable union of finite F-sets such

that ikfoD-Mand m(M0-M)=0. From (3.5) and (1.3), taking t = n

integral, we find that if

(3.6) m(V-TnM)>0

for all but a finite number of values of ra, then

00

22m(VTnM)
n-l

diverges. If fti is the dissipative part of 0 [4, pp. 46-49] we can

write fli= 22rTrM, M being a wandering set and r taking all ra-

tional values. M may be taken to be of finite measure.

Consider now a fixed set VEF of positive, finite measure. Then

(00 \ 00

V- E   T„M) =   22 m(V-TnM) < °o
n=—oo / n=—oo

since m(V) < ». But in view of (3.6) this can be the case only if

(3.7) m(V ■ TnM) = 0 for an infinity of values n.

Now because of <r-finiteness

00

0 =   E  Vi,        ViEF (0 < m(Vt) < oo).
t—00

Since the F.'s are denumerable it is clear from (3.7) that

(3.8) m(Vi-T„M) = 0

for an infinite sequence of values of ra which is the same for all i.

Denoting this sequence by «i, ra2, • • • , we have

(3.9) m(TnjM) ^   E m(Vi-TnjM) = 0
i=— oo

from (3.8). Hence
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m(M) = m(TniM) = 0,

which implies that fti has zero measure.

Theorem 2. The group Tt is metrically transitive.

We divide the proof into two cases.

Case 1. Let W be an invariant set of finite measure. Then there

exists a set M0= 227-i^-i (AjEF) such that MoDWand m(M0—W)

= 0. For every rational r, TrW=WETrM0 and m(TrM0-W)=0.

Setting

M  =22   TrMo  =22  22 TrAj (TrAjEP)
T T j

we have

(3.10) m[(M - T,M) + (TtM - M)] = 0

for rational t since in that case TtM = M. From the continuity of

M(VTtW) (t^O) proved in the lemma it follows that (3.10) holds

for all t. Hence TtM = M. Furthermore

(3.11) WEM   and   m(M - W) = 0

since M—W= ^r(PrM0— W), a denumerable union of sets of zero

measure. By an argument similar to the one used in Theorem 1,

(3.12) lim sup k(t)m(V ■ M) g C < oo
(-►00

(C being a constant) for every VEF of finite positive measure. Tak-

ing V=TrAj, (3.12) can hold only if m(TrA/)=m(T,Aj-M) =0 for

every j = l, 2, • • • and for every rational r. Hence m(M)=0 and

from (3.11), m(W)=0.

Case 2. Let the invariant set W be of infinite measure. Since ft is

the denumerable union of sets of finite measure, we may write

(3.13) Q- W = 22Ai    and     W=22Bh
i i

where the sets ^4y and Bj are of finite measure.

For each j there exists an Mj= XXi-^i* (MjkEF) with MjZ)Aj
and m(Mj-Aj) =0.

Assuming as we may that Bi has positive measure, let Cn be the

ascending sequence of F-sets converging to CZ)Bi where m(C — Bi)

= 0. Then

m(Mik ■ T,CN) ^ m(Mik ■ T,C) = m(Mjk ■ TtBi)

g m(Mjk-TtW) = m(MjkW) ^ m(ArW) = 0
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from (3.13). (3.2), (3.4), and (3S14) then imply

m(Mjk)m(CN) = 0,

from which we obtain m(Mik)=0 for k — 1, 2, • • • . Hence m(Mf)

= m(Aj) =0 for every j thus proving that m(Q— W) =0. This com-

pletes the proof of Theorem 2.

Let/(«) and g(u) be summable functions of a real variable u with

f-*g(u)du9*0. Then Theorems 1 and 2 and Hopf's theorem imply

Theorem 3. For almost all x0 (Lebesgue measure)

/f(xt)dt        f   f(u)du
0 J -oo

lim -=-

I    g(xt)dt        I    g(u)du
Jo J -oo

with probability one.

4. Application to the Brownian motion. Let a be an arbitrary real

number and yt (ts^O) the sample function of the separable Brownian

motion process. In this case conditions (1.1) to (1.6) are satisfied with

p(t, u) = (2wt)-1i2e-^2t,    and    k(t) = (27r*)1/2.

Setting

xt = a + yt,

Theorem 3 gives

Theorem 4.1 // y, is the Brownian motion process, then for a.e. a

(Lebesgue measure)

I    f(a + yt)dt        |    f(u)du
Jo J -oo

lim -=-

I    gia + yt)dt       I    giu)du
Jo J —00

with probability one.

5. Application to sums of independent random variables. Let

yj(j = 1,2, ■ • • ) be independent random variables with the common

distribution function F(y). Under the assumption that the partial

sums yi+ ■ ■ ■ +yn are interval recurrent it is proved in [2] that

1 Added in proof: The author understands that C. Derman, using a different

method, has also obtained Theorem 4 in which the result holds with o="0.
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E/(a+yi+•••+?,)      jf(u)du

(5.1) Prob     lim —-=-■    =1
n—»«      n /*

E g(« + yi + ■ ■ ■ + yd     I g(u)du
L j-i J

for a.e. a (Lebesgue measure), and furthermore that (5.1) holds for

every a if F(y) has an absolutely continuous component. However,

it may not be easy to verify the hypothesis of interval recurrence in

particular cases. Let us assume that the probability density F'(y)

exists and satisfies the following conditions (see [5]):

(5.2) F'(y) EL»(- oo, oo) forsome/>>l;

(5.3) There exist positive constants Bn such that

lim Prob (y'+' +y" ^y) = Va(y),
n—»» \ Bn /

Va(y) being the symmetric stable law with exponent a (0<ag2). (If

a = 2 we assume Ey2 < °o.)

If a>l, E\y\ is finite and a criterion of Chung and Fuchs [6] en-

sures interval recurrence provided £y = 0, while if Bn = Constant-ra1/a

(0<a<l) the partial sums are not interval recurrent [5]. With

regard to the other possibilities (for instance when a = l) we do not

know whether the sufficient conditions given in [6] always apply.

A similar situation arises when the y's are integer-valued. Hence it

seems desirable to obtain a condition involving the constants B„

under which (5.1) is true.

Assuming (5.2) and (5.3) to hold, the density pn(y) of yi+ • • • +yn

satisfies (Lemma 6.1 of [S])

(5.4) B„p„(y) ^ C independent of n and y, and

lim Bn{T(a~1)}~1pn(y) = 1 for every y.
n—.oo

Thus the discrete analogue of (1.4) and (1.5) is fulfilled. On account

of (5.3) the norming constants Bn satisfy [7, p. 155]

(5.5)     Bn —* oo, Bn+k/Bn —> 1    as    n —* oo    for every fixed integer k.

(5.5) shows that (1.2) is satisfied for integral t and a with k(n) =B„.

Making the obvious changes in the argument to suit the discrete

case, Theorems 1 and 2 imply
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Theorem 5. Let (5.2) and (5.3) hold. If the series 227Pn1 diverges,

then the dissipative part of ft (which now is the space of infinite sequences

of real numbers) has zero m-measure and the coordinate shift trans-

formation T is metrically transitive.

An application of Hopf's theorem then yields (5.1).

It is worth noting that the full force of the assumption of the

divergence of 227 Bn1 is used in proving the absence of the dissipa-

tive part while the metric transitivity of T needs in its proof merely

the fact that B„ satisfies (5.5). On the other hand if 227Pn1 con-

verges, there can be no interval recurrence and hence (5.1) cannot be

true. The proof of this observation made in [5] involves an applica-

tion of the criterion given in [6]. Combining these remarks with

Theorem 5 we have the following

Corollary 1. If the y's are random variables satisfying (5.2) and

(5.3), then (5.1) is true or not according as

CO QO

(5.6) 22 B^ =  °°     or     22Bn'< «.
i i

An interesting property of the norming constants Bn when a>l

emerges from the above corollary if we assume Theorem 4 of [2].

Corollary 2. Let (5.2) hold and let the y's belong to the domain

of attraction of the symmetric stable law with a > 1 (with the assumption

of finite second moment if a = 2). Then 227 Pn1 = °° •

Proof. We have

lim Prob |-- - An g y\ = Va(y),
n->» L Bn J

where the .4n's are real constants. Since a>l, Ey is finite and by a

result due to Gnedenko and Korolyuk [8],

An = (n/Bn)Ey.

Writing Xy=yy— Eyj, since £xy = 0 and F'(y) exists, Theorem 4 of [2]

implies (5.1) for every a. Corollary 2 then follows from Corollary 1.

We suppose next that the y's are integer-valued random variables.

Then if £ is an integer

(5.7) P(n,i;A) = f dFn(y - £) = f pn(k - Qn(dk),

where
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(5.8) R(A) = number of integers in A,

and for every integer k

(5.9) Pn(k) = Prob (yi+ ■■■ +yn = k).

It is easy to see that

(5.10) f   P(n, Z; A)U(dQ = 11(A).
J -00

Theorem 6. Let the integer-valued random variables y, satisfy the

following conditions:

(5.11) The greatest common divisor of the differences of the values

which yj assumes with positive probability is one.(This is the condition

(w) of [7]. It ensures the fact that the span of the lattice distribution F(y)

is maximal.)

(5.12) lim Prob \—-—-— ^ y\ = Va(y)  (0 < a ^ 2)
n->« L Bn J

(if a = 2 we again assume Ey2<*>), Va(y) being as in (5.3). Then,

provided
°°     -i

(5.13) E^n     =   «,
1

we have

E/(yi + --- + y,)      E/W
(5.14) Prob     lim -^- = -^-     = 1

~" E «(yi + • • • + yd     E«(*)
_ 1 -00 _

for every two functions of integers f(k), g(k) such that

LI/(*)!<»,     El «(*)!<».    rg(k)9*o.
—00 —00 —00

Proof. An argument of Gnedenko and Kolmogorov [7, pp. 252-

253] leads to

(5.15) Bnpn(k)   =   Va(k/Bn) + Rn,

where i?„ tends to zero uniformly in k. Since the density Fa' (y) is

bounded and continuous and since Fa' (0) j*0, we have

(5.16) Bnpn(k) g C independent of n and k,



i955l AN ERGODIC PROPERTY OF MARKOV PROCESSES 169

and

(5.17) lim Bnpn(k) = 7.(0).
n—• »

The rest of the proof differs from that of Theorem 5 in minor de-

tails. The analogues of Theorems 1 and 2 are established by making

the necessary changes using n-measure instead of Lebesgue measure.

We omit the proof of the following

Corollary. Let the integer-valued random variables yj belong to the

domain of attraction of a symmetric stable law with a>l. Then (5.14)

is true provided 227 B„l diverges.
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