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1. The problem. Let (oi, a2, - - - , flm+i) be a point in real euclidean

(w+l)-space Em+1 (m = 0, 1, 2, • • • ) subject to the conditions

m+1 m+1 m+1

(i)   Ea. = i.      E(^-iK = o,    ■•-,    E(»-i)'ff.- = o,
t-i t-i t-i

0 =: q < m.

(Equivalent conditions are Ei*+1 **o* = li k=0, I, ■ ■ ■ , q.)

The purpose of this paper is to prove the following:

Theorem. The minimum value of

-+»   2

/(«) = E o<
i-l

subject to the side conditions (1) is

m(m — 1) • • • (m — q)
O) f ■   = 1_-_-_^_—_.

(m+l)(m+2)---(m+q+l)

Hence

... . (q + l)27>(m)
(0) Jmin   = ->

(m+ 1)(« + 2) • • • (m + q + 1)

where P(m) is a polynomial of degree q and leading coefficient 1. Thus

.. /min

lim -= 1.
m-.« (5 + l)2/w

The restriction 0^q<m has been imposed on the side conditions

(1) and this assumption will be maintained in making the proof. How-

ever it is a simple matter to verify that for w = 0, 1, 2, • • ■ , q the

only point satisfying the equations (1) is (1, 0, • • • , 0). Hence we see

directly that/min = l. But this value is also given by formula (2).

Thus, the theorem remains valid without the restriction 0^q<m.

The minimization problem described above arose in connection

with a problem of linear smoothing of statistical data. Let £1, £2, £3, • • •

represent an incoming sequence of values of independent random
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variables, referred to as the "raw" data. It is desired to "smooth" this

data by a linear formula of the type

(4) Xn  =   0l£n + 02£n-l +   '  *  "   +  Om+lln-m-

The value x„ is the "smoothed" value of £„. For a given value of m the

problem is to select the coefficients ay in some optimal fashion.

Let |„, x„ denote the averages of the random variables £„, x„ re-

spectively. Let it be assumed that the variance of £„ is independent of

n; denote the common variance by a2. Then from (4) and the inde-

pendence of the £'s it follows that the variance t2 of x„ is independent

of n and is given by

r2 m+i   t

- = m = z at.
O^ «—1

Choosing the a's to minimize the ratio of variances leads to the prob-

lem of minimizing/(a). The side conditions (1) enter the problem as

follows. From (4), the average values satisfy the relation

Xn =  0l|n + 02|n-l +  " * *   + Om+lln-m.

While requiring that t2 be a minimum we must at the same time en-

sure that there is no systematic deviation of x„ from |n. With this in

mind we may impose the requirement that

Xn =  in

shall hold for all (sufficiently large) n whenever f „ is given by a formula

of the type

In = oco + ai» + ■ ■ ■ + atnq,

with the a's arbitrary. It is readily shown that this requirement is

identical with the restrictions (1). In this way we are led to the prob-

lem treated herein.

2. Evaluation of certain determinants. The solution of our mini-

mization problem will require the evaluation of certain determinants.

These determinants have as elements terms of the form Sk(m), where

Sk(m) = Z **•
i—l

It is well known1 that Sk(m) is a polynomial with leading term given

by_

1 VVhittaker and Robinson, The calculus of observations, 4th ed., 1944, p. 138.
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(5) Sk(m) = —— + • • •
* -+- 1

and with m as a factor:

(6) Sk(m) = mQk(m), Qk(m) a polynomial.

It will be convenient to employ the following terminology. By a

T-matrix we shall mean a square matrix V with l's along the main

diagonal and O's above the main diagonal. I.e.,

1

0

F= 1

1

Let x denote a column vector. Then by a P-transformation is meant

a transformation

y = Vx,

where V is a P-matrix. A P-transformation acts on a column vector

as follows: it adds to each component of the vector a linear combina-

tion of the preceding components. The following facts concerning

P-matrices are obvious.

(i)  | F| =1 (| F| = determinant of V).

(ii) The product of P-matrices is a P-matrix.

Lemma 1. Let s be any positive integer. Let t be any integer such that

l^t<s

and let r\, r2, • • ■ , rt be any t numbers. Then there exists a T-matrix

V of order s + 1 whose elements are polynomials in m and which has the

following property: For any integer k^O and anyt numbers ai, at, • • • at

the vector

ax(m — fi)* + a2(m — r2)h + ■ ■ ■ + at(m — r,)*

ai(m - r,)*+» + a2(m - r2)k+l + ■ ■ ■ + at(m - r,)*+1
(7) x =

Mm - ri)*+* + o2(»» - r2) *+•+•• • + at(m - r<)*+*.

is transformed by V into a vector of the form
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Vi(m)'

(8) Vx =   vt(m)  ,

0

0   .

where Vj(m) is a polynomial in m.

Proof. The proof will be made by induction on s. Consider first

5 = 1. Then t = 1 and

_ /ai(m - ri)k   \

\oi(» - ri)*+7

Then (8) holds if V is chosen as

\-(m-ri)     1/

Assume the theorem holds for 5 — 1 (with 5 > 1) and consider the value

5. Suppose first that t = 1. Then

' ax(m — ri)k

ax(m — r{)k+l

x =

ai(m — n)*"1"*

This vector can be transformed to the form (8) by adding to each

component (except the first) the product of —(m — r) with the pre-

ceding component. I.e.,

1

- (m - ri) 1 0

V = - (m - ri)

0 1

- (m - ri)     1

This establishes the desired result for r = l. Suppose now that

Kt^s

and consider the vector x of equation (7). Multiplying each com-

ponent by —(m—ri) and adding to the next component we see that
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by a F-matrix Fi, the vector x can be brought to

ai(m — ri)k + a2(m — r2)k + • • • + at(m — rt)k

a2(ri - r2)(m - r2)k + • • • + a,(ri - rt)(m - r,)k

ViX= a2(ri- r2)(m- r2)*+1 H-+ at(rx - rt)(m - rt)k+1    .

.     a2(r - r2)(m - r^^-1 + • • • + a»f>i - rt)(m - r,)k+>-\

Let y' denote the vector with s components which are those of the

above vector with the first component deleted. Since l^t— 1 =S 5 — 1

and the theorem is assumed to hold for s — l, there exists a T'-matrix

VI of order 5 depending only upon r2, r3, - - ■ , rt such that

v2(m)

V*y=     Q    .

6
Now augment the matrix V{ to a matrix of order 5 + 1 as follows:

v2=c °y

Then F2(Fix), i.e., (V2Vx)x has the required form (8). This completes

the proof.

Lemma 2. Let2

So(m)     Si(m)     ■ ■ ■ Sq(m)

Si(m)     S2(m)     - - - Sq+i(m)
A =

Sq(m)     Sq+i(m) ■ ■ ■ S2q(m)

Then

(9) \A\   = Hm*+1(m - l)"(m + 1)« • • • (m - q)(m + q)

1 The determinant | A \ belongs to a general class of determinants called Hankel (or

recurrent) determiants. The general form of such a determinant is |a;+,|, i, j = 0,

1, • • • , q, with a0, oi, • • • , aiq a given set of numbers. For a discussion of these de-

terminants see G. Kowalewski, Determinantetheorie, New York, Chelsea, 1948, p. 102

ff.
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where H is the nonzero determinant:3

1/1 1/2       • • • l/(q + 1)

1/2 1/3       • • • l/(o + 2)
tl =

1/(0 + 1)     1/(0 + 2) • • • l/(2q + 1)

Proof. Let us show first that the determinant is a polynomial of

degree (q + 1)2 with leading coefficient H, as indicated by equation

(9). By equation (5) the matrix of leading terms of the elements of

A is

C=(t—"-7), i,j=l,2,---,q+l.
\i + j - 1/

Consider the complete expansion of the determinant C. For each

permutation j(i) of 1,2, • • • , q + 1 there will be a term of this expan-

sion of the form

q+1 mi+,(i)-l

n—-<_i i+j(i) — i
The degree in m of this term is ]£«-i (*+./'(*) ~1) =2( Z«) -(« + !)

= (g + l)2. It follows that

| C |   = Hm^1*.

Thus,

MI = h«(»)
where g(m) has degree (o-fT)2 and leading coefficient 1. The lemma

will thereby be proved if | A \ can be shown to have each of the fac-

tors displayed in equation (9).

Consider first the factor m. From equation (6) each element of A

has m as a factor; consequently | A \ has mq+l as a factor, as was to be

shown. Next consider m — r for any fixed r = l, 2, • • • , q. For

fe=0, 1, 2, • • •  we have

(10) Sk(m) = Sk(m - r) + (m - r + l)k + ■ ■ • + mk.

Thus

A =^i + ^2

3 It is known that #=(2! 3! • • • q\y/2\ 3! • • • (2g+l)!. See, e.g., P61ya and

Szego, Aufgaben und Lehrsatze aus de Analysis, vol. 2, New York, Dover, 1945, pp. 98-

99 and 300.
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where

Ai = (Si+j(m - r)), i, j = 0, 1, '• • , q,.

and A2 is a matrix with each column of the form (7), the various

columns differing only in the value of k. By Lemma 1 there exists a

J"-matrix V of order g+1 such that the matrix VA2 is identically zero

below the rth row. Also each element of VAi has the factor (m — r)

since this is true of each element of ^4i by equation (6). It follows

that each element of VA = VAi-\-VA2 below the rth row has m — r as

a factor. Thus (m — r)*-^1 is a factor of | VA | = | V\ ■ \ A \ = \ A |, as

was to be shown.

The factor m+r may be treated in a similar manner. Writing

(11) Sk(m) = Sk(m + r) - (m + r)k- (m + 1)*

and eliminating £th powers on the right by pre-multiplication of A

by a T-matrix as above, we may show that (m+r)'1~T+1 is also a

factor of | A \. This completes the proof.

Lemma 3. Let

S0(m + 1)    Si(m)     • ■ • Sq(m)

Si(m) S2(m)     • • • Sq+i(m)
B =

Sq(m) Sq+i(m) • ■ ■ S2q(m)

Then

(12) | B\=Hm-(m-\)^(m+iy+1 ■ ■ ■ (m-q)°(m+q)2(m+q+l).

Proof. Notice that B differs from A of Lemma 2 only in having the

argument m +1 in place of m in the first entry of the matrix. It is clear

therefore that | B \ has the same leading coefficient and degree as A ;

this is indicated in equation (12). As before it is sufficient to show

that the factors of \B\ are those displayed in (12).

The factor m « appears in | B \ because m is a factor of each element

of B below the first row. Consider m — r for any fixed r = l, 2, • • • ,

q — 1. Using (10) for k = 1, 2, 3, • • • and leaving the first row of B un-
altered we may write

B = 5i + B2

where Bi and 732 are identical with .4i and A2 respectively below the

first row. Let x' be any column vector of B2 with the first element

deleted. Then by Lemma 1 there exists a J'-matrix V of order q such

that the vector V'x' has all its components beyond the first r equal
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to 0; the same matrix V applies to each of the columns of B2 with

first element deleted. Augment V to

\0    V'J

It follows that VB2 is identically zero below the (r + l)st row. Also,

each element of VB below the first row has m — r as a factor. Thus

each element of VB= VBi+VB2 below the (r + l)st row has m — r as

a factor. It follows as above that (m — r)q~T is a factor of |p|, as was

to be shown.

The factors m+r, r = 1, 2, • • ■ , g+1, are handled differently. First

consider m + 1. From So(m + l) = m + l and from equation (11) with

r — 1, k = l, 2, 3, • • • , we see that m+1 is a factor of each element

of P. Therefore (m + 1)q+1 is a factor of |P|. Next consider m+r for

fixed r = 2, 3, • • • , q+1. From equation (11)

Sk(m) = Rk(m + r) - (m + r - l)k - ■ ■ ■ - (m + l)k,

k= 1,2,3, ■■-,

where m+r is a factor of Rk(m+r). For t=0we write

S0(m + 1) = Ro(m + r) - (m + r- 1)° - ■■■ - (m+ 1)°,

Ro(m + r) —m + r.

Thus

B = Ci + C2

with

Ci = (Ri+i(m + r)), i, j = 0, 1, • • • , q,

and every column of C2 of the form (7) with t—r — 1. Thus by Lemma

1 there exists a P-matrix V such that VC2 is identically zero below

the (r — l)st row. By an argument like the one above it follows that

(m+r) «_r+2 is a factor of | B|, as was to be shown. The proof is com-

plete.

3. Proof of main theorem. We turn now to the proof of the theorem

stated in §1. With the Lagrange multiplier rule in mind, form

m+1 m+1 m+1

F = £ oi - 2X0 Z ai - 2Xi £ (i - l)o,- - • • •
«=i »=i »=i

m+1

i-l
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Set dF/da^O:

(13)    Xo + (t - 1)X, + ... + («- l)«x, = at,    i = 1, 2, • • • , m + 1..

The m — q + 2 linear equations (1) and (13) are to be solved for the

unknown a's and X's. Let us transform this set of equations. Multiply

each side of the ith equation (13) by (i — l)k, k = 0, 1, • • • , q, and add.

The result is the following set of equations

So(m + 1)X0 + 5i(«)Xi + ■ • • + Sq(m)\q  = 1,

Si(m)\0 + 5i(m)Xi -\-h Sq+i(m)\q = 0,
(14)

»

Sq(m)\a + Sq+1(m)\i + • • • + S2q(m)\q = 0.

The matrix of coefficients of the m+ff+2 equations (13) and (14) is

readily seen to have determinant |73| (except possibly for sign) with

B as in Lemma 3. It follows from that lemma and the condition

q<m that the matrix of coefficients referred to is nonsingular. There-

fore, equations (13) and (14) are equivalent to equations (1) and (13)

and either set of equations has the same unique solution

(Oi, • • • , flm+l, Xo, • • • , Xg).

Now let (ai, a2, ■ • • , am+\) be a point which provides/(a) with an

absolute minimum relative to the side conditions (1). From the stand-

ard necessary condition for a relative minimum it follows that there

exists a set of multipliers Xo, Xi, • • • , X„ which together with the a's

satisfy equations (1) and (13), or equivalently, equations (13) and

(14). Since equations (13) and (14) have exactly one solution, this

solution corresponds to the absolute minimum of f(a). We may now

determine the minimum value fmia. Multiply the ith. equation (13)

by a,- and add. The result is

Jmiii   =   Xo.

From equations (14)

1     Si(m)     • • • Sq(m)

0    S2(m)     • - - Sq+i(m)

0    Sq+i(m) ■ ■ ■ S2q(m)
Xo-i-i-•

Thus
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Ml
1 - Xo = -.—p •

I B\
From Lemmas 2 and 3,

_X w(w - 1) • • • (m - q)

° ~ (m + l)(m + 2) ■■■ (m + q+1)'

Hence

m(m - 1) ■ ■ ■ (m - q)
tmin *~~ An —   1 — 7

(m + l)(m + 2) ■■■(m + q+1)

which is equation (2) of the theorem to be proved. Equation (3) is

immediately derivable from equation (2). The proof is complete.
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