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1. In the differential equation

(1) x" + (X-/)x = 0,

let f=f(t) be a real-valued, continuous function on 0g<< oo and sup-

pose that X is a real parameter. If (1) is of the limit-point type, then

(1) and a boundary condition of the type

(2) x(0) cos a + x'(0) sin a = 0, 0 ^ a < ir,

determine, for every fixed a, a boundary value problem on0^/<<»

with a spectrum (of X-values) S = Sa [7]. It is known that the set S'

consisting of the set of cluster points of Sa is independent of a; loc.

cit. p. 251. The following theorem will be proved:

(*) If fit) denotes a real-valued, continuous function on the half-line

0 ^ / < oo satisfying the condition

(3) I    f(t)dt converges I   I     = lim   I     J,
•/ o \•/ o       r-»oo Jo  /

then (1) is of the limit-point type and

(4) S' = [0, »).

It is noteworthy that (3) may exist only conditionally and that

(30 f"|/W|*<«
J o

is not assumed. Actually, if (3') holds, much more is known. In fact,

in this case, there exist asymptotic formulas for the solutions of (1)

whenX>0 ([8, p. 421]; cf. also [7, p. 258], in case/(<)—>0 as 2->oo)

which guarantee, in particular, that 0^X<oo is in the continuous

spectrum for every boundary value problem determined by (1) and

(2). Obviously, the requirement (3) is compatible with T~iJ$\f(t)\dt

—>oo, as T—kx>, and, in fact, even with the requirement that

foT\f(t) I dt—* oo arbitrarily fast. Thus, if <f>(t) denotes any positive

function satisfying #(/)—>c0 as /—>oo, there exists a continuous func-

tion f(t)   on  0g*<oo   satisfying   (3)   and <f>(T) =o(f\f0T(t)\dt),  as
r->oo.
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On the other hand, most of the criteria for (4) or 5'D [0, oo) in-

volve |/(01 rather than/(0, and, as a consequence, require that f(t)

be close to zero "on the average." For instance, it is known that

(5) T-i f   |/(/) | dt->o, r->«,
Jo

is enough to guarantee that S'I)[0,   oo), although

lim sup T-1 I     | f(t) \dt < oo
J o

is not; cf. [3, p. 80]. Moreover, (5) is compatible with S' = (— oo, oo);

cf. [3].

2. Proof of (*). Since/ satisfies (3), it is clear that f0TQi-f(t))dt^> oo

as T—tco whenever X>0. It follows that (1) is oscillatory (i.e., every

nontrivial solution possesses an infinity of zeros clustering at +°o)

whenever X>0; [10], cf. also [4]. Next, it will be shown that, in view

of (3), the equation (1) is nonoscillatory whenever X <0. (It is of inter-

est to note here that there are known necessary and sufficient condi-

tions in order that an equation (1) be oscillatory; cf., e.g., [5; 9]. In

the present case it will be convenient for later use to give the direct

argument below.)

Suppose first that X is arbitrary and that (1) possesses an oscillatory

solution x=x(0(^0) with zeros tending to infinity. If S<T denote

two zeros of x(0, a multiplication of (1) by x followed by an integra-

tion leads to

(6) r x'Ht = x r **<« - r /*»#.
J s J s J s

An integration by parts of the second integral on the right side of the

equation (6) yields

(7) f  fxHt = - 2 f   xx'F(t)dt,       F{t) =   f f(s)ds.
J s J a Jo

In view of (3), F(t) = const.+o(l) as <—>oo, and an application of the

Schwarz inequality to the second integral of (7) now implies

/.r pT /   pT pT \U2
xndt = \\    x2dl + ol   I    xHt I    x'2dt\    ,

S J S \J 8 J S /

and hence,

(8) A =X + oU1'2),    where    A=f   x'2dt/J    xHt,
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where the "o term" refers to S—»oo. It readily follows from (8) that

XSO and so (1) must be nonoscillatory whenever X<0.

It follows from the last result that (1) is of the limit-point type and

that, in addition, S'C[0, oo); [l], cf. also [2]. There remains to be

shown that the half-line XSO belongs to S'. To this end, consider

any boundary condition (2) for a fixed value a and let

ma(\) = min | X — p |,

when p. is in the (closed) set Sa. It will be shown that

(9) ma(\) =0 for X > 0 (hence for XSO),

and so (4) will follow.

Let g=g(t) denote any function of class C2 on the finite interval

O^t^T and satisfying the boundary conditions (2) and

(10) g(T) = g'(T) - 0.

Then the argument of [6, pp. 579-580] shows that

(11) ml(\) f  gHt < f   (L(g) + \g)2dt (L(x) = x" -fx).
•/ 0 •'0

Next, let p. and € be positive and suppose that g(t) =y(t)h(t), where

h(t) =cos (p.1,2t) and y(t) is a nontrivial (oscillatory) solution of (1)

forX = e, so that L(y) + ey = 0, and satisfying (2) forx=y. Next, let T

be chosen so that

(12) y(T) = 0.

In addition, since (1) is of the limit-point type, the number e can

be chosen arbitrarily small and so that the function y satisfies

(13) f   y2dt = oo ;
Jo

cf. [7]. It will be supposed that p,=p.(T) is chosen so that

(14) cos (p^T) = 0;

hence, as a consequence of (12) and the relation g' =y'h-\-yh', g(t) also

satisfies (10). In view of

(15) L(g) + \g = (X - p - e)hy + 2y'h',

the relation (11) and the inequality (a+b)2 ^2(a2+b2) now yield

(16) ml(\) f   h2yHt £ const,   f   [py'2 + (X - /i - t)2y2]dt.
J o J o

Next, let T=Ti<Tt< ■ • •   denote the positive zeros of y=y(t)
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and choose p.n*=p,(Tn) (hence h = hn) so that (14) holds for T= Tn and

p„—>X( >0). (That this can be done is clear.) It follows from (16) that,

as n—* oo,

(17)     ml(\) g const, lim sup |   f "(e2y2 + \y'2)dt / f " hly2dt\.

A calculation like that of [6, p. 581], together with (12), yields

/Tn 2 2        l  rr" 2        l   -1/2/ rTn  i    rT»     \
hny dt^— I     ydt-"»     (   I      y' dt I      yWY'2.

If use is made of (13), a calculation similar to that used in obtaining

(8) shows that A =t+o(A112), as  r„-+oo, where

pTn I   pTn

A = An =  I     y'2dt /  I     fdt.

This implies however that A(Tn) <const. e for Tn large, and hence,

by (18), Jf'hlyWZconst.f?'y*dt>0 for r„ large and for a suffi-
ciently small e. Finally, relation (17) now implies m^X) ^ const.

(e2+eX). Since €>0 can be chosen arbitrarily small, relation (9)

follows and the proof of (*) is complete.
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