INTEGRABLE POTENTIALS AND HALF-LINE SPECTRA!
C. R. PUTNAM

1. In the differential equation
(1) '+ A —-flz=0,

let f=f(¢) be a real-valued, continuous function on 0 £¢< « and sup-
pose that \ is a real parameter. If (1) is of the limit-point type, then
(1) and a boundary condition of the type

)] 2(0) cos a + 2’(0) sin @ = 0, 0fa<m,

determine, for every fixed «, a boundary value problem on 0 =t<
with a spectrum (of A-values) S=S, [7]. It is known that the set S’
consisting of the set of cluster points of S, is independent of «; loc.
cit. p. 251. The following theorem will be proved:

(*) If f(t) denotes a real-valued, continuous function on the half-line
0=t< = satisfying the condition

3) fo ) f(t)dt converges ( fo ) = Tl_lg: . T),

then (1) is of the limit-point type and

C)) S’ = [0, o).
It is noteworthy that (3) may exist only conditionally and that
®) [Tlwla< s
0

is not assumed. Actually, if (3’) holds, much more is known. In fact,
in this case, there exist asymptotic formulas for the solutions of (1)
when A>0 ([8, p. 421]; cf. also [7, p. 258], in case f(£)—0 as t— o)
which guarantee, in particular, that 0=A < » is in the continuous
spectrum for every boundary value problem determined by (1) and
(2). Obviously, the requirement (3) is compatible with T-1f7|f(t)| d¢
—o, as T—oo, and, in fact, even with the requirement that
JJ|f(t)|dt— o arbitrarily fast. Thus, if ¢(f) denotes any positive
function satisfying ¢(¢f)— = as {— , there exists a continuous func-
tion f(f) on 0<t<w satisfying (3) and ¢(T)=o(f|fs(t)|dt), as

T— o,
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On the other hand, most of the criteria for (4) or S’D[0, ) in-
volve ' f(t)l rather than f(¢), and, as a consequence, require that f(¢)
be close to zero “on the average.” For instance, it is known that

T
(5) r!f | 7 | dt— o0, T— o,
0
is enough to guarantee that $’D[0, «), although
T
limsupT“f | f(®) | dt < =
0

is not; cf. [3, p. 80]. Moreover, (5) is compatible with §'=(— «,);
cf. [3].

2. Proof of (*). Since f satisfies (3), it is clear that [J(A—f(£))dt— =
as T—o whenever A >0. It follows that (1) is oscillatory (i.e., every
nontrivial solution possesses an infinity of zeros clustering at + )
whenever A >0; [10], cf. also [4]. Next, it will be shown that, in view
of (3), the equation (1) is nonoscillatory whenever X <0. (It is of inter-
est to note here that there are known necessary and sufficient condi-
tions in order that an equation (1) be oscillatory; cf., e.g., [5; 9]. In
the present case it will be convenient for later use to give the direct
argument below.)

Suppose first that \ is arbitrary and that (1) possesses an oscillatory
solution x =x(¢)(#0) with zeros tending to infinity. If S<T denote
two zeros of x(f), a multiplication of (1) by x followed by an integra-
tion leads to

T T T
(6) f x2'%dt = N f x%dt — f fx?dt.
] 8 s

An integration by parts of the second integral on the right side of the
equation (6) yields

T T ¢
7N fs fxtdt = — 2]; xx'F(t)dt, F(t) = fo f(s)ds.

In view of (3), F(t) =const.+o(1) as t— , and an application of the
Schwarz inequality to the second integral of (7) now implies

T T T T 1/2
f 2%t =\ f 2%t + o ( f x%dt f x’zdl> s
s s s s

and hence,

T T
(8 A =X+ 0(4'?), where A4 = f x'2dt / f x%dt,
8 8
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where the “o term” refers to S— . It readily follows from (8) that
A0 and so (1) must be nonoscillatory whenever A <0.

It follows from the last result that (1) is of the limit-point type and
that, in addition, S’C [0, =); [1], cf. also [2]. There remains to be
shown that the half-line A=0 belongs to S’. To this end, consider
any boundary condition (2) for a fixed value & and let

ma(\) = min |\ — p],
when p is in the (closed) set S.. It will be shown that
9 ms(\) =0 for A > 0 (hence for A = 0),

and so (4) will follow.
Let g=g(t) denote any function of class C? on the finite interval
0=<t¢t=T and satisfying the boundary conditions (2) and

(10) g(T) = ¢'(T) = 0.
Then the argument of [6, pp. 579-580] shows that

T T
an  m f gl < f L) + Nt (L(x) = & — fa).

Next, let 4 and e be positive and suppose that g(¢) =y(£)k(t), where
h(t) =cos (/%) and y(t) is a nontrivial (oscillatory) solution of (1)
for A =¢, so that L(y)+ey=0, and satisfying (2) for x=y. Next, let T
be chosen so that

(12) y(T) = 0.

In addition, since (1) is of the limit-point type, the number e can
be chosen arbitrarily small and so that the function y satisfies

(13) f Yyt = o;

0
cf. [7]. It will be supposed that u=pu(T) is chosen so that
(149 cos (ul?T) = 0;

hence, as a consequence of (12) and the relation g’ =y'k+yh’, g(t) also
satisfies (10). In view of

(15) L@ + 2=\ —p— by + 2y'W,

the relation (11) and the inequality (a+5)2=<2(a%+5?%) now yield
T T

(16) m:()\) f h*y%dt < const. f [£y? + (A — u — €)2y2]dt.
[] 0

Next, let T=T;<T;< - - - denote the positive zeros of y=y(t)
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and choose u, =u(T,) (hence h=h,) so that (14) holds for T'=T, and
4.—A(>0). (That this can be done is clear.) It follows from (16) that,
as n— o,

Tn Tn
an m:()\) < const. lim sup [ . (29?2 + Ny'?)dt / f h,z,y2dt:|.
0

A calculation like that of [6, p. 581 ], together with (12), yields

Tn Ta 12 Ta , Tn
(18) f ,.y fdt = —f y *dr — —u,. (f y dtf det)”z.
0 0 0

If use is made of (13), a calculation similar to that used in obtaining
(8) shows that A =e+0(4Y?), as T,—», where

Ty Tn
A=4d,= f y2dt / f ydt.
0 0

This implies however that A(Tn) <const. € for T, large, and hence,
by (18), Joi*hiy%dt=const. [y y?dt>0 for T, large and for a suffi-
ciently small e. Finally, relation (17) now implies m2%(\) < const.
(e2+e\). Since €>0 can be chosen arbitrarily small, relation (9)
follows and the proof of (*) is complete.

REFERENCES

1. P. Hartman, Differential egquations with non-oscillatory eigenfunctions, Duke
Math. J. vol. 15 (1948) pp. 697-709.

2. P. Hartman and C. R. Putnam, The least cluster point of the spectrum of bound-
ary value problems, Amer. J. Math. vol. 70 (1948) pp. 849-855.

3. P. Hartman and A. Wintner, On perturbations of the continuous spectrum of the
harmonic oscillator, Amer. J. Math. vol. 74 (1952) pp. 79-85.

4. W. Leighton, The detection of the oscillation of solutions of a second order linear
differential equation, Duke Math. J. vol. 17 (1950) pp. 57-62.

5. C. R. Putnam, An oscillation criterion involving a mini principle, Duke
Math. J. vol. 16 (1949) pp. 633-636.

6. , On the unboundedness of the essential spectrum, Amer. J. Math. vol. 74
(1952) pp. 578-586.

7. H. Weyl, Ueber gewihnliche Differentialgleichungen mit Singularititen und die
zugehbrigen Entwicklungen willkiirlicher Funktionen, Math. Ann. vol. 68 (1910) pp.
222-269.

8. A. Wintner, Small perturbations, Amer. J. Math. vol. 67 (1945) pp. 417-430.

9. , A norm criterion for non-oscillatory differential equations, Quarterly of
Applied Mathematics vol. 6 (1948) pp. 183-185.

10. , A criterion of oscillatory stability, Quarterly of Applied Mathematics
vol. 7 (1949) pp. 115-117.

PurbpUE UNIVERSITY



