A BASIC SET OF HOMOGENEOUS HARMONIC POLYNOMIALS IN k VARIABLES

E. P. MILES, JR. AND ERNEST WILLIAMS

- 1. The authors present basic sets of:
- (a) homogeneous harmonic polynomials of degree n in k variables, $k \ge 3$;
 - (b) associated polynomial solutions of the wave equation, and
 - (c) analogous solutions for $\sum_{j=1}^{k} (\partial^{s} u)/(\partial x_{j}^{s}) = 0$, $s = 3, 4, \cdots$.
- 2. For any set of non-negative integers (b_j) such that $b_1 \leq 1$ and $\sum_{i=1}^{k} b_i = n$, let

$$H_{b_1b_2\cdots b_k}^n(x_1, x_2, \cdots, x_k)$$

(1)
$$= \sum_{j=1}^{k} (-1)^{\lfloor a_1/2 \rfloor} \frac{n!}{\prod_{j=1}^{k} a_j! \prod_{j=2}^{k} \left(\frac{b_j - a_j}{2}\right)!} \prod_{j=1}^{k} x_j^{a_j}$$

where the summation is extended over all (a_i) such that:

- (1) $a_j \equiv b_j \mod 2, j = 1, 2, \cdots, k$
- $(2) \quad \sum_{j=1}^k a_j = n,$
- (3) $a_j \leq b_j, j = 2, 3, \cdots, k$.

The polynomials (1) form a basic set of homogeneous harmonic polynomials in k variables. The proof is given in three parts.

A. The polynomials (1) are linearly independent since each contains exactly one different nonvanishing term of the monomials $x_1^{a_1}x_2^{a_2}\cdots x_k^{a_k}$, $\sum_{j=1}^k a_j = n$, $a_1 \le 1$.

Moreover, since the number of terms in $(\sum_{j=1}^k x_j)^n$ is

$$\binom{n+k-1}{k-1},$$

the total number of monomials of type $x_2^{a_2}x_3^{a_3} \cdot \cdot \cdot x_k^{a_k}$, $\sum_{j=2}^k a_j = n$, and of type $x_1x_2^{a_2}x_3^{a_3} \cdot \cdot \cdot x_k^{a_k}$, $\sum_{j=2}^k a_j = n-1$, is

$$\binom{n+k-2}{k-2} + \binom{n+k-3}{k-2} = \binom{n+k-3}{k-3} \left(\frac{2n}{k-2} + 1\right).$$

Thus the polynomials (1) are

Presented to the Society, November 26, 1954; received by the editors March 22, 1954 and, in revised form, June 10, 1954.

$$\binom{n+k-3}{k-3}\left(\frac{2n}{k-2}+1\right)$$

in number.

- B. They are harmonic. Let c_j , $j=1, \dots, k$, be such that
- $(1) c_i \equiv b \mod 2,$
- (2) $c_j \le b_j$, $j = 2, 3, \dots, k$, and (3) $\sum_{j=1}^{k} c_j = n 2$.

The coefficient $B_{c_1, c_2, \cdots, c_k}$ of $\prod_{i=1}^k x_i^{c_i}$ in $\nabla^2 H_{b_1, \cdots, b_k}^n (x_1, \cdots, x_k)$ is given by

$$B_{c_{1},\dots,c_{k}} = (-1)^{\lfloor c_{1}/2 \rfloor + 1} \frac{n!}{\prod_{j=1}^{k} c_{j}!} \cdot \left[\frac{\left[\frac{c_{1}}{2} + 1 \right]!}{\prod_{j=1}^{k} \left(\frac{b_{j} - c_{j}}{2} \right)!} - \frac{\sum_{j=2}^{k} \left[\frac{c_{1}}{2} \right]! \left(\frac{b_{j} - c_{j}}{2} \right)}{\prod_{j=2}^{k} \left(\frac{b_{j} - c_{j}}{2} \right)!} \right]$$

$$= (-1)^{\lfloor c_{1}/2 \rfloor + 1} \frac{n! \left[\frac{c_{1}}{2} \right]!}{\prod_{j=1}^{k} c_{j}! \prod_{j=2}^{k} \left(\frac{b_{j} - c_{j}}{2} \right)!} \cdot \left[\left[\frac{c_{1}}{2} \right] + 1 - \frac{1}{2} \sum_{j=2}^{k} b_{j} + \frac{1}{2} \sum_{j=2}^{k} c_{j} \right]$$

$$= (-1)^{\lfloor c_{1}/2 \rfloor + 1} \frac{n! \left[\frac{c_{1}}{2} \right]!}{\prod_{j=1}^{k} c_{j}! \prod_{j=2}^{k} \left(\frac{b_{j} - c_{j}}{2} \right)!} \cdot \left[\left[\frac{c_{1}}{2} \right] + 1 - \frac{1}{2} \left(n - b_{1} \right) + \frac{1}{2} \left(n - 2 - c_{1} \right) \right]$$

$$= (-1)^{\lfloor c_{1}/2 \rfloor + 1} \frac{n! \left[\frac{c_{1}}{2} \right]!}{\prod_{j=1}^{k} c_{j}! \prod_{j=2}^{k} \left(\frac{b_{j} - c_{j}}{2} \right)!} \cdot \left[\left[\frac{c_{1}}{2} \right] - \frac{1}{2} \left(c_{1} - b_{1} \right) \right] \equiv 0.$$

C. For a general homogeneous polynomial H_k^n of degree n in k variables the vanishing of the Laplacian $\nabla^2 H_k^n$ provides

$$\binom{n+k-3}{k-1}$$
 equations on the $\binom{n+k-1}{k-1}$ coefficients

of H_k^n . Thus the number of linearly independent homogeneous harmonic polynomials of degree n in k variables is

$$\binom{n+k-1}{k-1} - \binom{n+k-3}{k-1} = \binom{n+k-3}{k-3} \left(\frac{2n}{k-2} + 1\right),$$

which is the number of polynomials (1).

- 3. It is worth noting that the polynomials obtained from (1) by deleting the factor $(-1^{[a_1/2]}$ are solutions of the generalized wave equation $\sum_{j=2}^k \frac{\partial^2 u}{\partial x_j^2} = \frac{\partial^2 u}{\partial x_1^2}$, which form a basic set for that equation.
- 4. Further, for each set of k non-negative integers b_j such that $\sum_{j=1}^{k} b_j = n$, $b_1 \le s-1$, the polynomials

$$H_{b_1,b_2,\ldots,b_k}^{n,s}(x_1, x_2, \cdots, x_k) = \sum_{j=1}^{n} (-1)^{[a_1/s]} \frac{n!}{\prod_{j=1}^k a_j!} \frac{\left[\frac{a_1}{s}\right]!}{\prod_{j=2}^k \left(\frac{b_j - a_j}{s}\right)!} \prod_{j=1}^k x_j^{a_j},$$

where the summation extends over all a_j such that

- (1) $a_j \equiv b_j \mod s, j = 1, 2, \cdots, k$,
- $(2) \quad \sum_{j=1}^k a_j = n,$
- $(3) \ \overrightarrow{a_j} \leq b_j, \ j=2, \ 3, \cdots, k,$

provide a basic set of solutions for

$$\sum_{j=1}^k \frac{\partial^s u}{\partial x_j^s} = 0.$$

5. Of particular interest for harmonic polynomials is the case k=3. Whittaker¹ has obtained the general solution of $\nabla^2 U(x, y, z) = 0$ by means of an integral. Ketchum² gives another form of the general solution as an analytic function of a hypervariable w such that the 2n+1 linearly independent components of w^n form a basic set of homogeneous harmonic polynomials of degree n. Both of these re-

¹ Math. Ann. vol. 57 (1903) p. 333.

² Amer. J. Math. vol. 51 (1929) p. 179.

sults use trigonometric functions, and neither of them displays immediately a set of polynomial solutions of degree n. Morse and Feshbach³ indicate how one obtains, from a special case of Whittaker's integral, a basic set of degree n, but carry the computation only as far as n=3. Courant and Hilbert⁴ give a basic set with only one of the 2n+1 members having real coefficients. The polynomials (1) for k=3, $x_1=x$, $x_2=y$ and $x_3=z$, unlike those from the basic sets referred to above, are given explicitly for each n. Thus, for n=6 the 13 independent spherical harmonics are obtained by assigning $(b_1 \ b_2 \ b_3)$ the values $(0\ 6\ 0)$, $(0\ 5\ 1)$, $(0\ 4\ 2)$, $(0\ 3\ 3)$, $(0\ 2\ 4)$, $(0\ 1\ 5)$, $(0\ 0\ 6)$, $(1\ 5\ 0)$, $(1\ 4\ 1)$ $(1\ 3\ 2)$, $(1\ 2\ 3)$, $(1\ 1\ 4)$, and $(1\ 0\ 5)$ in turn. We display a typical member,

$$H_{123}^{6} = 60xy^{2}z^{3} - 60x^{3}y^{2}z - 20x^{3}z^{3} + 12x^{5}z.$$

6. The authors wish to express their appreciation to Professor Ernest Ikenberry who directed their attention to the 3-dimensional basic sets given by Morse-Feshbach and Courant-Hilbert and to the referee who pointed out the construction of basic sets of p+2 dimensions appearing in Higher transcendental functions, 5 A. Erdélyi, editor. These sets for p+2 dimensions differ from those of the authors in that the coefficients are in general complex while those of the authors are real.

Added in proof. When these results for k=3 only were presented at the International Congress of Mathematicians, September, 1954, Professors P. C. Rosenbloom and L. Bers kindly called the authors' attention to a three variable basic set of harmonic polynomials given by M. H. Protter [Generalized spherical harmonics, Trans. Amer. Math. Soc. vol. 63 (1948) pp. 314–341]. In a forthcoming note in the Proceedings, the authors point out that their results for k=3 give a single formulation for the four classes into which Protter's basic set was divided.

ALABAMA POLYTECHNIC INSTITUTE

^a P. M. Morse and H. Feshbach, *Methods of theoretical physics*, New York, McGraw-Hill, 1953, Part II, pp. 1270-1271.

⁴ R. Courant and D. Hilbert, Methods of mathematical physics, 1st English ed., New York, Interscience, 1953, vol. I, p. 540.

⁶ Arthur Erdélyi, et al., *Higher transcendental functions*, vol. II, (Bateman Manuscript Project) New York, McGraw-Hill, 1953, p. 239.