
ON THE COMMUTATOR SUBGROUP OF THE
GENERAL LINEAR GROUP

O. LITOFF

1. Introduction. The theory of the general linear group has been

developed most extensively for the case in which the matrix elements

are elements of a field or division ring (e.g. [3; 4]). A few other cases

have also been considered, particularly those in which the matrix ele-

ments are integers [5] or integers mod pr, p a prime [l] and [2].

In each of these cases mentioned above it is possible to characterize

the commutator subgroup (with an exception for the two-dimensional

case) in two other ways:

(i) It is generated by the set of transvections of the group (matrices

which correspond to the addition of multiples of one row or column

to another).

(ii) It consists of the set of all matrices of the group with deter-

minant one (except for the case of noncommutative division rings).

It seems natural to ask whether these results can be extended to

cases in which the matrix elements are allowed to lie in other rings,

and, if so, to what extent the results depend upon the ring structure.

In this paper the extension is made for two classes of rings, viz.,

Euclidean rings and rings with the property that the set of nonunits

forms an ideal. The result for the former class subsumes the theorem

of Hua and Reiner [S] that the commutator subgroup is character-

ized by (ii) when the matrix elements are integers. (Their proof differs

from the one here.) The latter class of rings includes division rings

and rings of integers mod pT as special cases, as well as valuation

rings and local rings.

2. Definitions and notation. The general linear group GLn(R) is

defined as the multiplicative group of n X» invertible matrices with

elements in an associative ring R containing an identity element.

Adopting the terminology of Dieudonne [4], we define a transvection

Tij(\) to be the matrix differing from the identity only in the ijth

place where X stands instead of 0. We note that 7^7'(A) = 7\3(—A)

and that left (right) multiplication of any matrix by a transvection

has the effect of adding a multiple of one row (column) to another.

A combination of transvections which will prove useful is the matrix

Pij=Tij(l)Tji( — l)Tij(l). PijA is the matrix formed by replacing
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the jth row by the jth row and the jth row by the negative of the ith

row. APu is the matrix formed by replacing the jth column by the

ith column and the ith column by the negative of the jth column.

The group generated by the transvections of GLn(R) will be de-

noted by 13„(P), the commutator subgroup by Gn(R), and the uni-

modular group of elements of determinant one by 1Jn(R). When no

ambiguity can arise the notation for the general linear group and

these three subgroups will be simplified to Q, 15, Q, and V. Since in

general the determinant of a matrix with elements in a noncommu-

tative ring is not defined, we shall always assume the commutativi-

ty of R whenever referring to Vn(R).1

3. We first direct our attention to those inclusion relations which

hold for all rings R.

Theorem 1. For any commutative ring R, 15 CU and QC.V.

The proof is immediate.

Theorem 2. For any ring R, 15 CC except when n = 2 and 2 is not

invertible.

Proof. Case l.«^3. 7\y(X) =Tik(\)Tkj(l)T*1(K)Tu1(l) fori, j, ft all

distinct. This computation was exhibited by Iwasawa [6] for R a

field. The special case when X = l was used earlier by Brenner [l].

Case 2. n = 2, 2 invertible in R.

A similar relation holds for

a
In particular, if R is a valuation ring, Theorem 2 may be slightly

sharpened as follows:

Theorem 3. If R is a valuation ring, then 15CQ except when w=2

and R modulo its radical is the field of two elements.

Proof. If R is a valuation ring such that the quotient ring is not

the field of two elements, then there must exist a unit X in R such that

1 Dieudonne in [4] extended the definition of determinant to the case in which R

is a noncommutative division ring, but with this definition the proof of Theorem 9

fails to go through. (If the determinant of D(ji) is 1, one can conclude only that y.

is a commutator in R.) Dieudonne himself did not consider the subgroup V.
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A — 1 is also a unit. If n is any arbitrary element of R, then

co-c.DC <xroen vt-
A similar relation holds for

CD-
Thus for any ring R, 'GCCC'L' (with the exception noted when

« = 2).

4. A crucial step in Dieudonn6's proof [4] that T5D(3 when R is a

division ring is the fact that any element A of Q can be written

(1) A = TD(ji)

where D(n)=(dij) is a diagonal matrix such that du = l for i?^n,

dnn=fx, a unit of R. Indeed Dieudonne's proof goes through for any

ring R which has decomposition (1). We show below that (^has this

property if R is Euclidean or if the set of nonunits of R forms an

ideal.

Theorem 4. If the set of nonunits of R forms an ideal, then

A=TD(n).

Proof. The condition that the set of nonunits of R forms an ideal

insures the existence of at least one unit in every row and column of

any matrix AirxQ (otherwise the product of A by its inverse would

have a row or column without units). The only necessary modifica-

tion in the proof of Dieudonne is the substitution of the word "unit"

for the word "nonzero." The plan of the proof is to multiply A on the

left by suitable elements of 15 until the product is of the form D(\x).

Let A = (aij). Since A is nonsingular, at least one element of the first

column is a unit. We may as well assume <z2i is a unit (otherwise

multiply by P2l-G15). If now we add to the first row (1 — aXi)a2i times

the second row (multiplying on the left by 7\2[(1 -Oujfli1]) we get a

matrix B — (6,-y) such that 6u = 1. Now by adding to each row a suita-

ble multiple of the first row we eventually obtain a matrix C=(c<y)

where Cu = l and c;i = 0, %j6\. Now consider the second column of C.

There must exist a unit d2 for ij^l. Repeat the process. Eventually

a matrix of the form D(/x) is reached.

Theorem 5. If R is Euclidean, then A = TD(fx).

Proof. Since A is invertible, there must exist a nonzero element in
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the first column. If there actually exists a unit, then we may proceed

as in Theorem 4. This will be the case if any one element is a right

divisor of all the others. However, if there is no unit in the first col-

umn, then the greatest common right divisor of the nonzero elements

is a unit (it is a right divisor of the product of the first row of A~l

by the first column of A), and, if A is multiplied on the left by suita-

ble transvections, a new matrix can be obtained which has this unit

in its first column. Suppose that a2i?^0 and not a unit. There must

be another nonzero element in the first column, so we may assume

aii5^0. We show first that A can be multiplied on the left by a finite

product of transvections to obtain a matrix A' where either a'n or a'2l

is the greatest common right divisor of an and a2i and a'a = atl for

t>2. Suppose |a2i| ^|on|. (If not, multiply by Pi2.) By the Eu-

clidean algorithm we may subtract from the first row of A a suitable

left multiple of the second row to obtain a matrix B where | fax \

< \b2i\ (fai = a2i). If in is not the g.c.r.d. of au and a2i, then continue

by subtracting a suitable left multiple of the first row from the

second, obtaining a matrix C where |c2i| <|cn|. Continuing in this

way, we obtain after a finite number of steps the matrix A'. Suppose

o^! is the g.c.r.d. of On and <z2i. If there were any other nonzero ele-

ments in the first column of A, say a3i5*=0, then again by successive

applications of the Euclidean algorithm we can obtain a matrix

A" where a%x is the g.c.r.d. of an, a2\, and a31 and a',[ =ati for t>3. We

continue this process until we reach a matrix which has in its first

column the g.c.r.d. of all the nonzero elements in the first column of

A. Since this element is a unit, we may now proceed as in Theorem 4.

For the remainder of this paper we assume R is any ring with the

decomposition (1).

The proofs of Lemma 1 and Theorem 6 below can now be taken

from Dieudonne without change. We repeat them here for complete-

ness.

Lemma 1. 15 is a normal subgroup of Q.

Proof. We need to show that for any transvection 7\y(X),

-47\j(X).<4-1£13for any .4 G £7. By (1) it is sufficient to show this when

A =D(n). But

D0»)r«(X)D-10») = Tv(\) (i *n,j* n),

D(ji)Ttn(\)D-i(ji) = r,B(xM-1),

Db)Tni(\)&-l(ji) = r„y(Mx).

Theorem 6. 13DC-
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Proof. We prove this by showing Q/15 is abelian. By (1) we need

to show that D(\)D(fi) = D(n)D(\) (mod 15). There is no loss of

generality in assuming n = 2.

n-(0').(").(")-(10) (mod^).
\o m/    V-x o/    \-x o/    Vo Xm/    \o \h/

Similarly,

(o°) = 0 <modC)-

Hence

D(\)D(jt) = DQw) = D(jik) = D(»)D(\) (mod T3).

Combining Theorems 2 and 6, we obtain

Theorem 7. 15 = Q except when n = 2 and 2 is not invertible.

In the special case when R is a valuation ring we have

Theorem 8. For R a valuation ring, 15 = Q except when n = 2 and R

modulo its radical is the field of two elements.

We now turn our attention to 1).

Theorem 9. 15 = V.

Proof. 15C.V by Theorem 1. By assumption any U£l1) is of the

form TD(p) where the determinant of D(p.) =1. Therefore joi = 1 and

U&5.

5. We have shown that a sufficient condition for Qn(R) to be char-

acterized by (i) and (ii) is that every element A of R can be written

A = TD(n). If R is commutative, then it is easy to see that this condi-

tion is also necessary. Suppose the determinant of A is p. Write

A =BD(ix). B must have determinant 1 and since 15 = 1), B£15.
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A NOTE ON INVARIANT SUBRINGS

GERTRUDE EHRLICH

The problem of invariant subrings has been studied in detail for

certain types of rings satisfying the descending chain condition on

one-sided ideals.

We prove here two theorems concerning invariant subrings of a

ring R without assuming the descending chain condition.

Theorem 1. Let R be a ring with identity 1. If S is a subring of R

with identity 1, and S has a representation as the complete matrix ring

of order w^2 over a ring with identity, then S cannot be a proper in-

variant subring of R.

Proof. Let E= {eij\ be a set of n2 matrix units contained in S,

and let B be the centralizer of E relative to S. Then S = Bn. Let A

be the centralizer of E relative to R. Then R=An, and B^A. If t is

an arbitrary element of A, we obtain (following Hattori [l]) that

eii(\-\-eijt)eji('\.—eiji)eii=teii belongs to S for arbitrary i^j. Hence

t= £?-i teu belongs to S, and A ^S. But then A =B, and S = R.

Theorem 2. Let Rbe a ring with identity 1, and not of characteristic

2. Assume that R has a representation as the complete matrix ring of

order n^2 over a ring with identity. Let S be an invariant sub-sfield of

R, with identity 1. Then S is a subfield of the center of R.

Proof. Let E = [dj] be a set of w2 matrix units contained in R, and

let A be the centralizer of E relative to R, so that R=An. We note

first that for every noncentral element x contained in R, there exists

a square-nilpotent element p^O (p2 = 0) such that xp^px. (For, if x

commutes with every square-nilpotent element, then x commutes in
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