
PERIOD EQUATIONS APPLIID TO DIFFERENCE SETS

EMMA LEH. 'ER

Difference sets. A difference set of 01 'er k and multiplicity X is a

set of k elements «i, aa, • • • , a* (mod v)   uch that the congruence

ai — at = d (mod v)

has exactly X solutions for d=£0 (mod v).

A multiplier of a difference set is any numL r t such that the set

tei, to2, • • • , tak is congruent to the set ai+s, *.?+s, ■ • ■ , a*+s in

some order, for some value of s.

Hall and Ryser[l] proved the following interesting theorem:

Every prime divisor q of k—\ is a multiplier provided </>X. Although

the proviso g>X is essential to the proof of the theorem, it appears

that all divisors of k— X are actually multipliers in all the explicit

numerical examples of difference sets which are available.

It therefore seems of interest to test this theorem out more gener-

ally on classes of known residue difference sets, that is, difference sets

composed of wth power residues modulo a prime p. In this case we

have shown [2] that:

The set of multipliers of a residue difference set is the set itself. There-

fore any statement we can make about multipliers of a residue differ-

ence set will also be valid for the residues themselves and vice versa.

It is well known that the (p — l)/2=k quadratic residues modulo a

prime p= — l (mod 4) form a difference set of multiplicity

X = (/>-3)/4, so that k-\ = (p + l)/4. The validity of Hall and
Ryser's theorem for all the divisors of k— X follows for these sets from

the rather trivial theorem to the effect that:

Theorem I. All the divisors of (p+z*)/4 are quadratic residues of

p=—l (mod 4), if z is odd.

In the first place 2 divides (£+z2)/4 only if pss—1 (mod 8), in

which case 2 is a quadratic residue of p. If q is any odd divisor of

p+z2, then we can write p+z2 = qm and by the law of quadratic rec-

iprocity

Hence all the divisors of (p+z2)/4 are quadratic residues of p.
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Although it has been shown [2] that cubic residues do not form

difference sets, Marshall Hall has constructed a set (as yet unpub-

lished) made up of cubic residues and of sextic nonresidues belonging

to a certain residue class. It can be shown that such a set actually

forms a difference set of (p —1)/2 elements provided p = 4A2-\-21. In

this case k— A = (£-fT)/4 and he was able to show by the law of cubic

reciprocity that all the divisors of k— X are cubic residues and there-

fore multipliers. The consideration of the cubic equation for the

trinomial periods gives a slightly more general theorem of which this

is a special case, but which does not appear to follow from the law of

cubic reciprocity.

Theorem II. If p = 4A2+27B2, then all the divisors of (p+B2)/4:
are cubic residues of p.

This theorem will be proved in the next section.

The corresponding results for quartic residues are as follows.

Chowla [3] has shown that the (p —1)/4 = & quartic residues form a

difference set of multiplicity A = (/> — 5)/16 modulo a prime ^ = l+4y2,

y odd. Hence in this case k—\ = (3p + l)/16. In a previous paper

[2] we have also considered a modified residue difference set for

which zero was counted as an element of the set, and showed that

the quartic residues and zero form a difference set modulo p = 9+4y2,

y odd. In this case k— \ = (3p + 9)/16. The fact that all the divisors of

k— X are multipliers in both these cases follows from a theorem of

Sylvester [4], which was stated by him without proof on several oc-

casions and which is as follows:

Theorem III (Sylvester). If p=x2-\-4y2, y odd, then all the divisors

of (3p-\-x2)/l6 are quartic residues of p.

For proof he simply states: "This theorem deduced from the

method applied to the divisors of period-functions does not appear

to be referable to any known theorem concerning biquadratic

residues." We hope that in our proof in the next section we have re-

constructed the method that Sylvester had in mind.

Since, in our modified difference set, 3 is always a divisor of k— X

we can state the following corollary to Theorem III.

Corollary I. 3 is a quartic residue of all primes of the form

p = 9+4y2, y odd.

This corollary can be easily verified by the law of quartic reciproc-

ity.

We have also shown [2] that the octic residues form a difference set
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modulo p = 9-f-4y2 = l-|-2&2, with k—\ = (7p + l)/64:, if 2 is a quartic

residue, and that the octic residues and zero form a difference set, if

2 is a quartic residue, for/> = 212+4y2=72-f-2&2, in which case k— X

= (7£+49)/64. The fact that all the divisors of k— X are multipliers

for both these classes of octic difference sets follows from the follow-

ing theorem, whose proof will be found in the next section. Since the

condition for quartic residuacity of 2 for p = 9 (mod 16) is y = 4yi

this theorem can be stated:

Theorem IV. ///> = 9a2-|-64y? = a2+262 = 9 (mod 16), then all the

divisors of (7£+a2)/64 are octic residues of p.

The special case of this theorem which corresponds to the modified

residue set for which 7 is always a divisor of k— X leads to the follow-

ing corollary:

Corollary 11. 7 is an octic residue of all primes of the form p — 212

+ 64y2 = 72+262.

In general primes satisfying conditions of the theorem are rather

rare; there are only three such primes less than ten thousand, namely

p = 73, 6361, and 9001. They may be found from the solutions of the

Pell equation
t2 - 2m2 = a2,

with p=a2+8t2, or from consulting a table of quadratic partitions of

p such as Cunningham [5].

This disposes of all known residue difference sets and shows that

for such sets all the divisors of k—\ are multipliers.

Period equations. The proofs of Theorems 2, 3, and 4 are based on

a theorem of Kummer concerning the divisors of numbers repre-

sented by equations whose roots are the so-called periods. If p=ef+l

is a prime, then the /-nomial periods 770, t\\, • • • , t)e^i are given by

/-1

(1) Vk = E exp (2irig"+"/p) (k = 0, 1, ■ ■ • , e - 1)
r—0

where g is a primitive root of p.

These 77's satisfy an irreducible equation of degree e with integer

coefficients and have the following well known properties

(2) E * = - 1,

e-l

(3) VmVm+k  =     E (*■   h)r]m+h + ftk,

where
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CI    if / is even, k = 0, or if / is odd, k = e/2,
fk = "L

1.0    otherwise,

and where the cyclotomic integer (k, h) is the number of solutions of

the congruence

ge,+* + i = r+h (mod p)      fov= i, 2, • • • ,/)

having the property that

(4) (*, h) = (ft + e/2, k + e/2) (f odd).

We shall denote by

(5) *.(y) - ft (y - vi) = 0
1-0

the period equation of degree e. Kummer [6] introduces another

quantity
e-l

(6) Pr=U (jl,  ~  V,+r)
r—0

and states that "P, being a symmetric function of the periods, is an

integer." This statement is questioned by Vandiver [7] and we take

this opportunity to point out that although P is not a symmetric

function of the periods it is nevertheless an integer, being a cyclic

function of the periods, which is doubtless what Kummer had in

mind. The fact that P, is an integer is important in the proof of

Kummer's theorem, which can now be stated as follows:

Kummer's Theorem. The form 4>e(y) has besides the divisor p, in

general, only such primes for divisors which are eth power residues of p;

besides this, however, it can have a finite number of exceptional divisors

when e is composite. These exceptional prime divisors q are such that if

g.c.d. (r, e) =a then the first a factors of the product Pr must be divisible

by q, which in this case may be only an ath power residue of p.

Remark. It must be noted that the product of the first a factors of

Pr need not be an integer and that in this case divisibility by q means

divisibility of the coefficients of every rj by q. Of course if Pr itself

happens to be prime to </>e(y) for all r which have a factor in common

with e, there are no exceptional primes.

Period equations <f>,(y) =0 are well known [8] for e = 2, 3, and 4.

The reduced equations Fe(z) =0 with roots f» = ei7, +1 are much sim-

pler and easier to handle. The corresponding forms are connected by

the relation
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(7) 4>.{y) = e-*F.(z), z = ey + 1,

so that we shall be able to make statements about the character of

the divisors of numbers represented by F,(z)/e".

For e = 2, f0 is the well known Gauss sum, and for p= — 1 (mod 4)

(8) F2(z) = z2 + p = 0.

Hence by Kummer's theorem all the divisors of (z2-\-p)/4, with z

odd, are quadratic residues of p, which gives another proof of our

Theorem I.

For e = 3 and p = 4A2+27B2, the trinomial period equation may be

written

(9) F3(z) = 2' - 3px - 4pA = 0, A = 1 (mod 3).

Letting z = A, we have

/p - 27B2        \
(10) F3(A) = A3 - 7pA = A(A2 - lp) = A (--lp\

= - 21A{p + B2)/4.

Hence, since e is a prime, it follows from Kummer's theorem that all

the divisors of A and of (p-\-B2)/4 are cubic residues of p without

exceptions. This proves our Theorem II.

For e — i and £ = x2+4y2, y odd, the period equation can be best

written in a form given by Lebesgue [8], namely

(11) Ft(z) = (z2 + 3p)2 - 4p(z - x)2 = 0, * si (mod 4).

Letting z=x, we obtain at once

(12) Ft(x) = (3p + x2)2.

Hence by Kummer's theorem all the divisors of (3p-\-x2)/16 are

quartic residues of p provided they are prime to

(13) P2 = (ijo - I2)2(^i - vz)2 = py2-

This is always the case 1. :cause (3p+x2)/16 = (p — y2)/4 is prime to

py2. This value for P2 can be found in a footnote of Sylvester's note

[4, p. 478] and can be easily calculated from the quartic equation

(11).
For e = 8, p =x2+64yl=a2+2b2 = 9 (mod 16), which is the case

under consideration, the period equation has never been calculated.

This is one of four possible cases (for which 2 is a quartic residue),

which arise with e = S, none of which has been explicitly written out.

To quote Smith's Report [8]: "The determination of the coefficients
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of F(y) = 0 may be effected for any given prime p and for any divisor

e of p — 1 by methods which, however tedious, present no theoretical

difficulty." We shall now proceed with this task for a fairly general

class of primes p.

To simplify the calculations we shall first determine the equation

of degree 4 whose roots are fo, f2, Zt, Te- This equation turns out to be

of the form

f(z) = L(z) + px'2M(z) = 0

where L(z) and M(z) are polynomials with integer coefficients. It

follows that the remaining 4 roots satisfy the equation L(z) —p1,2M(z)

= 0 so that

(14) F.(z) = [L(z)]2 - p[M(z)]2 = 0.

This will give our octic equation in a form similar to Lebesgue's

quartic. Hence we need only calculate the coefficients of

(15) /(Z) = (Z ~ U){Z " U){Z ~ r')(Z ~ U)

= Z4 — CiZ3 + C2Z2 — CzZ + d = 0.

To do this we refer to Lebesgue's form of the quartic [8], which for

p — 1 (mod 4) is as follows

(16) Fi{Z) = (S' ~ PY ~ 4P(Z ~ XY
= [z2 - 2p1'h + (2pl'2x - p) ] [z2 + IptH - (2p"2x + p) ].

Thus the quantities

a = (fo + f4)/2    and    0 = (f 2 + {-,)/2

are roots of the quadratic

z2 - 2p1>iz + (2pu2x - p) = 0,

and hence

(17) a = fo + f2 + tt + fe = 2(a + p) = 4pl'\

We shall also need the following expressions:

a/3 = 2pV2x - p,        a2 + /32 = 6p - 4pll2x,

a3 + /33 = 2pl'2(7p - 6p1'2x).

Next

(19) c2 = 4a/3 + f0f4 + UU = Wx ~ 4p + rof4 + f2f6.

We proceed to calculate
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(20) f0f4 = 64t,o7J4 + 8(t,0 + Vi) + I-

By (3) and (4)

64^ = (Vo + 7,4)64(0, 0) + (rn + t,6)64(1, 0)

+ (V2 + 776)64(2, 0) + (7,3 + 7,7)64(3, 0) + &(p - 1).

The cyclotomic numbers (0, 0), (1, 0), (2, 0), and (3, 0) of order 8 are

known [9] to be as follows:

64(0, 0) = p - 15 - 2x,       64(2, 0) = p - 7 - 2x - 8a,

64(1, 0) = 64(3, 0) = p - 7 + 2x + 4a.

Hence

fof4 = (7,0 + 7J2 + 7,4 + r)t)(p — 7 — 2x)

(23) + (in + 7,3 + r,6 + V7)(P -7 + 2x + 4a)

- 8a(7,2 + th) + 8p-7.

But

(no + V2 + V* + ij.) = (P112 ~ l)/2,

(7,! + 7,3 + 7,6 + ,7)   =   -   &'* +   l)/2

so that

fof4 =7p-2a- 2pU2(x + a) - 8a(r,2 + t,6)

= 7p - 2pl>2(x + a) - 2a$.

Similarly

f2f° = 7P ~ 2a ~ 2PU2(* + a) - 8a(7,„ + 7,4)
(26)

= 7p - 2pl<2(x + a) - 2aa.

Adding,

(27) f0f4 + f2fe = 14p - 4p1'2(x + a) - 4ap1'2 = 14/. - 4pl'2(x + 2a).

Hence by (19)

(28) c2 = ldp + 4pu2(x - 2a).

We can now write

(29) c3 = 2foM3 + 2f2f 6«.

Using (25) and (26) we have

(30) c3 = [7p - 2p"2(x + a)]4pu2 - 4a(a2 + /32).
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Hence by (18) and (30)

(31) c3 = 4pl'2(7p + 4ax) - 8p(x + 4a).

Finally by (25) and (26)

d = for*-We = [lp ~ WKx + a)]2

-4a[7p - 2p"2(x + a)]/.1'2 + 4a2ap.

Hence by (18)

(32) a = 49p2 + 4p(x2 + 4ax + 2a2) + pl>2(8a2x - 28p(x + 2a)).

Hence substituting (17), (28), (31), and (32) into (15) we obtain

Fs(z) = [(z2 + 7p)2 - 4p(z2 - 2(x + 4a))z - (x2 + 4ax + 2a2)]2

(33) - 16p[- 23+ (x- 2a)32- (7p + 4ax)z

+ (2a2x- 7px - 14pa)]2 = 0.

In order to apply this result to the proof of Theorem IV we first

simplify it by considering the special case x = — 3a and denote the

corresponding equation by F$(z)=0. This produces a considerable

simplification, namely

Ft*(z) = [(z2 + 7p)2 - 4p(z - a)2]2

- 16/.[(2 - a)(32 + 6a2 - 6a2 + 7p)]2 = 0.

It is now quite evident that

(34) Fs*(a)/8* =  [(a2 + 7p)/64]2,

and hence by Kummer's theorem all the divisors of (a2-\-7p)/64 must

be octic residues of p provided they are prime to P2 and P4.

We next calculate P4:

(35)        88i\ = (f, - u)\u - f6)2(f2 - u)\u - ro2.

We can write the product of two of these factors as follows:

(36)      (f° ~ r4)2(f2 ~UY= 16(a' ~ Ui)^ ~ UU)

= 16[(a/3)2 - (a2Ms + PUt) + ct].

By (18), (25), (26), and (32) we have

(ft " f4)2(f2 - fe)2

= 16[(2/>1'2a; - p)2 - {7p - 2pl'2{x + a))(6p - 4p1'2x)

+ 4ap"2(7p - 6pv2x) + 49p2 + 4p(x2 + 4ax + 2a2)

+ p1l*(fio»x- 28p(x+2a))].
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Combining we get

(37) (r° ~ ^^ ~ re)2

= 128[p(p + a2 - 2ax) + pU2(px - 2pa + a2x)].

Similarly

(38) <*-«*■-«'
= 128[p(p + a2 - 2ax) - pll2(px - 2pa + a2x)].

Multiplying these together we have

88P4 = 1282[p2(p + a2 - 2ax)2 - p(px - 2pa + a2x)2\

(39) 2 2 2   2 22    2   4
= 128 p(p - x)(p - a)   =2   yib p.

Remembering that b is even, b = 2bi, we finally have

(40) Pi = 4y\b\p.

Since Pi and (7p+a2)/64 cannot have an odd factor in common,

there are no odd exceptional divisors which are quartic instead of octic

residues. As for the character of 2, it is well known [10] that 2 is an

octic residue of p = 9 (mod 16) if and only if y is odd. If y is even,

however, then p=x2 = 9a2 (mod 256) and therefore (7p+a2)/64=a2

is not divisible by 2. Hence there are no exceptional divisors of P4.

It remains to inquire if there are divisors of 7p+a2 which may be only

quadratic residues of p. Such exceptional divisors would have to

divide the coefficients of the expansion of the product of the first 2

factors of P2 by Kummer's theorem, namely

(7,0 — Vt)(vi — 7,j)

= [(- 2a + 6)t,„ + (2a - b)Vl + (2a + 6)7,2 - (2a + 6)7,3

+       (2a + b+ 2y)Vi + (- 2a + b - 2y)r,s

+ (- 2a-b+ 2y)7,6 + (2a - b - 2y)i»r]/4.

These coefficients have obviously no odd common factor, which com-

pletes the rather lengthy proof of Theorem IV.

It may be interesting to note that Pi itself contains the factor

(7p+a2)/64. In fact we find that for x= — 3a

and that
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np + a\ (9p - 17a2 \     2

/7p+a\/9p~ 17a2 \     2
P3=(^4-)(-^6— +hy)**-

From this we can write down the discriminant A of the octic <t>s(y)

as P\P\P\Pt.

V7p + a2ir/9p - 17aV        , 212 Ui ,

A = 2 HHlA-iH ->y\»>>*
18,   2   ,     „    !v8r,   2   ,     „    2,2 .2    2,2    14.4    7

= 2  (a + 7y0 [(a + 9y,)   - 4Jiyi] yi fap .

For example, for p = 73, this discriminant is

A = 2"-34-737.
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