
ON A CLASS OF RANDOM VARIABLES

FRANK SPITZER

1. Introduction. The purpose of this note is to point out a connec-

tion between the theory of probability and the mean value theorems

of classical analysis. This connection will be exploited to study a

class of random variables which give rise to interesting mean value

theorems for analytic functions of a complex variable. As an illustra-

tion, consider the mean value theorem

(1.1) -  f '/(«")<« =/(<)),
2x J o

where f(rea) =f(z) is any analytic function regular in a circle of radius

R>r about the origin. We can define a particular complex valued

random variable Z in the following way: \Z\ =r with probability one,

and arg Z is uniformly distributed on the interval [— x, x]. We shall

denote by E the linear operator which "takes the expected value" of

Z and of measurable functions of Z with respect to the probability

measure we have defined. Then E[Z]=0, and the first member of

(1.1) is clearly E[f(Z)], so that (1.1) may be written in the form

(1.2) E[f(Z)] = f[E(Z)].

Equation (1.2) will be the point of departure for this discussion.

We shall study complex valued random variables Z with the property

that (1.2) holds for all suitably restricted analytic functions/(z).

2. Complex valued regular random variables. To anticipate difficul-

ties arising from problems of measurability we shall restrict the classes

of complex valued random variables1 Z and of analytic functions/(z)

under consideration. f(z) will be a member of the class of polynomials

in z, while Z will be assumed to possess finite absolute moments of all

orders. Then both members of equation (1.2) are seen to be finite,

although not necessarily equal. We shall now use (1.2) to define a

class of random variables.

Definition. A complex valued random variable Z is said to be a

regular random variable (r.r.v.), if
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1 A complex valued random variable Z is a pair of real valued random variables X

and Y, in the sense that Z takes the values X+iY. X and Y are not assumed in-

dependent, so that every probability measure in the plane determines a complex

valued random variable.

494



ON A CLASS OF RANDOM VARIABLES 495

£[|Z|»] < co, m = 1, 2, • • • ,

and if

E[f(Z)] = f[E(Z)]

for every polynomial/(z).

Regular random variables, as defined, have the following basic

properties:

Theorem 1. (a) If Z is a r.r.v., and iff(z) is a polynomial, thenf(Z)

is again a r.r.v.

(b) If Zi and Z2 are independent (in the sense of probability) r.r.v.'s,

then Zi+Z2 is again a r.r.v.

Proof, (a) Since £[|z|n]< » for all n and since/(z) is a poly-

nomial, we have -E[|/(Z)|"]< °° for all n. It remains to show that

for every polynomial we have E[g{f(Z)} ] =g[E{f(Z) ] ]. Simplifying

the notation, we have Egf(Z) =gfE(Z) because gf is a polynomial,

and gfE(Z) =gEf(Z) because Z is a r.r.v.

(b) E[\Zi+Z2\ n]^E[(\Zi\+\Z2\)"]<«>. Since Zx and Z2 are in-
dependent r.r.v.'s with expectation operators £1 and E2, we have for

an arbitrary polynomial/(z)

Ef(Zi+Z2) = E2Exf(Zi+Z2) = E2f[E!(Zi) + Z2]

= f[Ei(Zi) + E2(Z2)] = f[E(Zi+Z2)].

That completes the proof.

Next we consider the real and imaginary parts X and Y of a r.r.v.

Z = X+iY. Without loss of generality we may assume that E[Z] =0,

since by Theorem 1 the translate Z—E[Z] of a r.r.v. is again a r.r.v.

Theorem 1(a) applied to the polynomial f(z) =z2 at once yields the

Corollary. The real and imaginary parts X and Y of a r.r.v. with

mean zero form a pair of real valued orthogonal random variables with

the same variance, i.e.

E(X) = E(Y) = E(XY) = E(X2) - E(Y2) = 0.

It is clear from the example given in the introduction (1.1) that

X and F, although orthogonal, will not in general be independent.

Moreover, not every pair of orthogonal random variables can con-

stitute the real and imaginary parts of a r.r.v. This motivates the

Definition. The couple of real valued random variables X and Y

is called a couple of conjugate random variables if and only if

Z = X+iY is a r.r.v.

A couple of conjugate random variables is therefore determined by
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a probability measure in the plane, just as is a r.r.v. In order to

further characterize such measures, let $(a, /?) denote the symbolic

power series

(2.1) *(a|j8) = £^£[(aX + 07)«],
„_o   n\

where X and Y are conjugate random variables with mean zero. The

variables a and /3 are taken to be complex valued. We are not assum-

ing that the bivariate characteristic function

<t,(a, 0) = E[eiaX+i»Y] (a, 0 real)

exists for complex values of a. and p\ Therefore $(a, /S) must, in what

follows, be interpreted as a symbolic power series in a and /3. Only

if there exists a neighborhood N of the origin in the complex plane

such that the series $(a, f3) converges for all a and /? in N can it be

asserted that this series represents the characteristic function, i.e.

that <p(a, /3) =^(a, fi) for all a and /3 in N. Given <p(a, f3) for real a

and j3, the .coefficients of the power series <3?(a, /S) ate, however,

uniquely determined. They are known to equal the coefficients of

the MacLaurin expansion of <f>(a, f3), because the moments of X and

Y are finite. On the other hand, given <£(«, /3), cj>(a, /3) need not be

uniquely determined. The following theorem shows how r.r.v.'s can

be characterized in terms of their $(a, p1).

Theorem 2. Let Z = XJtiY be a complex valued random variable

with mean zero, all of whose absolute moments exist. Then Z is a r.r.v.

if and only if

(2.2) $(a, ia) = 1

for all complex a.

Proof. Because £[|z|"]< oo for all «, $(a, f3) is well defined by

(2.1). Suppose that (2.2) holds. Then, after substituting @=ia into

(2.1) the coefficients of a" must vanish for w^l, i.e. we have E[(X

+iY)n]=0 for w^l. If f(z) is a polynomial, it follows that Ef(Z)

=/(0) =fE(Z), so that Z is a r.r.v. Conversely, if Z is a r.r.v. with

E[Z] =0, then it satisfies (1.2) for/(z) =z". Hence we have E[Zn] =0

for w^l, so that <!>(«, ia) = l, by (2.1).

It is well known that not only the random variable of (1.1), but

all other radially symmetric complex valued random variables satisfy

the mean value theorem (1.2). That this is so can be verified from

Theorem 2. By radial symmetry about the origin we mean that the

probability measure of Z is invariant under all rotations about the
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origin, i.e. that e*Z has the same probability measure as Z for all

real values of 0. It is known [l] that a radially symmetric random

variable Z has a characteristic function of the form

(2.3) <p(a, 0) = E[e'«*HW] =  f XJ0(R(a2 + p2)l*)dF(R)

for real a and /3. Ja(x) is the Bessel function of order zero, and F(x)

is a probability distribution on [0, oo). If, in addition, all the

moments of F(x) exist, then (2.3) determines uniquely the coeffi-

cients of <t>(a, /?) as defined in (2.1). It follows from (2.3) that

3>(a, ten) = 1, i.e. that Z is a r.r.v.

A well-known radially symmetric complex valued random variable

is Z = X+iY, where X and Y are independent, normal, and have the

same variance. Clearly Z is a r.r.v., in fact

1     /*°° r°° r      (x - a)2~\

(2-4) isJJ>,+w"4--iH
r    (y-b)2~\

• exp-dxdy = f(a + ib)

for every entire function f(z) of order less than two. Z, as defined

here, is known to be the only radially symmetric complex valued

random variable whose real and imaginary parts are independent

random variables [2]. We shall now investigate whether it is the only

r.r.v. with independent real and imaginary parts. Of course the two

dimensional Dirac 5-function is such a r.r.v. (a unit mass concen-

trated at a point), but we shall show that there are still other proba-

bility distributions F(x), such that

I    /(* + iy)dxF(x - a)dvF(y - b) = f(a + ib)
-00 •*   -00

for every polynomial/(z), i.e. that there are other r.r.v.'s with inde-

pendent identically distributed real and imaginary parts. For an

example, see equations (4.1) to (4.3). Equation (2.5) suggests that

such r.r.v.'s may, in a very natural way, be regarded as a generaliza-

tion of the Dirac 5-function, and hence as a generalization of complex

numbers.

3. Regular random variables with independent real and imaginary

parts. We shall now formulate the main theorem concerning such

r.r.v.'s. Let X and Y be independent real-valued random variables

with finite moments. Let$x(a) and $„(/3) be the symbolic power series
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,2,   (ia)n °°    (i8)n

*.(«) = £ ■—- E^>    **Ci9) = £ -^7- £(F")>
n=o     n\ „_0     n\

for complex a and p\

Theorem 3. X and Y are conjugate, with mean zero, i.e. Z = X+iY

is a r.r.v. with mean zero, if and only if

(3.1) *,(o) *,(»«) =- 1.

Further, (3.1) A0W5 if awi oraZy i/

2b (2n\
E[X2^] = £[F2»«] = Z (-l)k(0)E[X2k]E[Y2"-2k] = 0,

(3. L) *=o V«/

» = 1, 2, • • • .

Proof. Term by term multiplication of the power series in (3.1)

yields

£ (**)• £ /  (l)\*    E(Xk)E(Y»~k) m 1,
n-o *=o (n — «)!«!

or £ [(X+t F)B] =0 for n = 1. This proves the first part of the theorem.

Also (3.2) clearly implies that-E[Zn]=0 for ra^l, i.e. that Z is a r.r.v.

Finally, if we assume that £[2*] =0 for k>, 1, the second half of (3.2)

follows by choosing k to be even. The first half of (3.2) follows from

E[Zk] =0 by induction. For assume that E[X2k+1]=E[Yu+1] =0 for

4=0, 1, • • • , n-1. Then E[(X+iY)2n+1] =0 implies that

E[X2n+1] + (i)2"+1£[72n+1] = 0.

Hence all odd moments vanish, by induction. This completes the

proof.
It remains to exhibit independent conjugate random variables

which are neither normal, nor constants. It is easily verified that

<£x(X) =cos X and <py(K) = [cosh X]-1 are both characteristic functions

of real-valued random variables, which we may call X and Y. Since

both characteristic functions are regular in X for |X] <x/2, we have

for complex X

$*(X)$„(iX) = 1,

and it follows from Theorem 3 that, if X and Y are taken to be inde-

pendent, Z = X+iY is a r.r.v. Incidentally,

Z = tanh (ir/4)W,

where W is the r.r.v. which is defined by saying that | W\ = 1 with
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probability one, and that arg IF is uniformly distributed on [—ir, ir].

We note that Z is unbounded in the y-direction. Indeed, there are

no bounded r.r.v.'s with independent real and imaginary parts, if we

except the trivial case of a point mass. For suppose Z = X+iY were a

r.r.v., bounded with probability one. It is well-known that the char-

acteristic functions <f>x(\) and <£„(A) will then have to be entire func-

tions of order one. But Theorem 3 implies that

(3.3) *.(X)*,(*\) = 1,

if we assume that Z has been translated to have mean zero. Since

</>k(X) is entire, $*(X) has no zeros. An entire function of X of order one

which has no zeros is of the form exp (A\+B). Hence Z must be the

unit mass at the origin, under the assumption of boundedness and

mean zero.

4. Self-conjugate random variables. We shall briefly consider a

class of real-valued random variables which arise in the following way.

Definition. A real-valued random variable is said to be self-con-

jugate, if Z = X+iY is a r.r.v. with mean zero when Y is independent

of X and has the same distribution as X.

First an example is constructed from the example in the previous

section. We form

(4.1) <b(\) = <bx(\)4>v(\) = cos X/cosh X.

It is easily verified that d>(\) is the characteristic function of a real-

valued random variable X which has the probability density

1   /*°° cos X
g(x) = — I    tr**-d\

2x J _«,        cosh X
(4.2) j_r_i _i -[

" T Lcosh (x(x - l)/2)      cosh (x(x + l)/2)J'

Since <b(\)d>(i\) =1, X is a self-conjugate real-valued random vari-

able. If Y is taken to be distributed as X and to be independent of

X, then Z = X+iY is a r.r.v. The mean value theorem for analytic

functions corresponding to equation (1.2), when applied to the pres-

ent r.r.v. Z, becomes:

/OO       /% 00I    f(x + iy)g(x - a)g(y - b)dxdy m f(a + ib),
-x,J _oo

with g(x) given by (4.2), and (4.3) holds for every polynomial, and

in fact for every entire function /(z) of order less than one.
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According to its definition and Theorem 3, a random variable X

is self-conjugate if and only if

(4.4) *(a)$(ta) = 1, 4>(a) = 4>(-a),

where $(a) is the symbolic power series

A   (*«)"
*(«) = E-^-f-£(*")■

n=0        M!

Regardless of whether $(a) converges or not we may form the sym-

bolic power series log $(a), which has the following definition:

r "    (ia)n "1
log *(«) = log i + E —r £(Xn) >

L n-l        »! J

where the right side is to be expanded in powers of a by using the

power series for log (1+z).  If X is self-conjugate, it follows from

(4.4) that

(4.5) log $(«) + log 3>(t'a) = 0,    log $(a) m log <£( — a).

If a random variable X has finite moments the coefficients an in

oo

(4.6) log 4>(a) = E a»«"
n—l

are uniquely determined by the moments. The an, apart from normal-

izing constants, are known as the semi-invariants of X. The logarithm

of the characteristic function <£(X) of a random variable with finite

moments has a MacLaurin expansion. Hence the coefficients of log

$(a) are given by

(4.7) a. = — — log 4>(0).
m!  d\n

Combining equations (4.5), (4.6), and (4.7), it is evident that we have

proved

Theorem 4. Let <p(X) be a characteristic function. Then it is the char-

acteristic function of a self-conjugate random variable if and only if

(4.8) (d»/d\") log>(0)> 0,

when n is odd or a multiple of four.

This theorem is far from final, in that it answers an easy question

but raises a difficult one: which functions <£(X), satisfying (4.8), are
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characteristic functions? This is an open problem, but the following

remarks have bearing on it.

Remark 1. If

*    1 - X2/5,2       , "     1 i

then 0(X) is the characteristic function of a self-conjugate random

variable for large enough positive values of k. (The proof is based on

the fact that

1 - X2        T     A    1

7tW-7x'J
is a characteristic function for A^l. The above infinite product con-

verges to a characteristic function which evidently satisfies (4.8).)

Remark 2. The following fact is a consequence of Remark 1, and

of the work of Polya [3 ] on the zeros of entire functions. Let f(x) be

positive, integrable and nondecreasing on the unit interval. Let

*(A) =  I    /(*) cos Xx<fx.
J o

Then

<t>(\) = ¥(X)/*(tX)

is the characteristic function of a self-conjugate random variable.

Remark 3. Theorem 4 suggests the question whether there exist

characteristic functions all of whose semi-invariants vanish from a

certain point on. The answer is negative, with the obvious exception

of the normal random variables. In other words, it is known that, if a

polynomial P(\) is the logarithm of a characteristic function, then

P(X) is at most of degree two [4].

Remark 4. The self-conjugate laws enjoy the following type of

group property which is an immediate consequence of Theorem 4.

Let <j>i(X), <£2(X), and <l>3(\) be characteristic functions, and suppose

that <£i(X)02(X) =<3!>3(X). If one assumes that any two of these are self-

conjugate, then it follows that the third one is also self-conjugate.

It is known that this group property is not shared by the class of

infinitely divisible laws. The normal random variables are evidently

both infinitely divisible and self-conjugate. However, they are the

only ones with this property. This is easily verified by applying (4.8)

to the Levy-Khintchine representation for the logarithm of an in-

finitely divisible characteristic function.
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5. A generalization to n dimensions. We shall now define regular

random variables in n dimensions. The defining relation (1.2) for

the case of two dimensions could have been written

E[u(Xu X2)] = u[E(Xi), E(X2)],

where the couple {X\, X2] is a two-dimensional vector random vari-

able, and where u(xi, x2) is a harmonic function of the real variables

Xi, x2. In n dimensions we shall accordingly deal with vector random

variables X= \XU X2, ■ • • , Xn}, having as their components n real-

valued random variables which may or may not be independent.

m(x)=m(xi, x2, • ■ • , xn) will be restricted to be a harmonic poly-

nomial, i.e. a polynomial in Xi, x2, • • ■ , xn, which satisfies Laplace's

equation in n dimensions. The coefficients of u(x) may be complex.

We shall write u[E(X)] ior u[E(Xi), • ■ ■ , E(Xn)].

Definition. X is said to be an n-dimensional regular random vari-

able, if all the moments of its components exist, and if

(5.1) E[u(X)] = u[E(X)]

for every harmonic polynomial u(x).

Our previous definition of a r.r.v. in two dimensions is clearly in

agreement with the above definition. In the case of one dimension X

reduces to an ordinary real-valued random variable. u(x) reduces to a

linear function ax+b. Since £ is a linear operator, every real-valued

random variable with finite moments is a one dimensional r.r.v.

To see that there exist r.r.v.'s in three and higher dimensions, we

turn again to the radially symmetric case. Suppose that E(X) =0 and

that the probability measure of X is left invariant by rotations about

the origin, and that in addition the moments of X, and hence of

(X\+ ■ ■ • +Xl)112, are finite. The probability measure of X may be

written dFdp, where the radial part F is a probability distribution on

the positive real numbers with finite moments, and where p is the

uniform distribution over an (m —1)-sphere 5 about the origin. Since

u(x) is measurable with regard to dFdp. we have

E[u(X)] = lira   f   dF(p) f u(P, 0i, • • • , 0„_i)^i, ■ ■ • , «»-0-
fl->oo   Jq Js

By the mean value theorem for harmonic functions

I  udn = m(0)
J s

for every value of p, so that E[u(X)]=u(0) =u[E(X)].
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The above discussion proves that X is a r.r.v. if its components

Xi (i = l, 2, • • • , n) are mutually independent normal random vari-

ables with the same variance. The following theorem will show that

in three and higher dimensions there are no other r.r.v.'s with inde-

pendent components.

Theorem 5. Let X be a regular random variable in n dimensions

(n — 3), whose components are independent. Then the components of X

are all normally distributed with the same variance.

Proof. It will suffice to prove the theorem for the case « = 3. For

suppose that Xa, XB, Xy are three arbitrary components of an

w-dimensional r.r.v. X. The definition of X requires (5.1) to hold for

any harmonic polynomial in Xa, Xp, Xy, which were arbitrarily se-

lected. Hence all the components of Xwill have been shown to be

normal if we prove the theorem for n = 3.

There is obviously no loss of generality in assuming that E(X) =0.

We further note that the components of X= {Xi, X2, X3} must have

the same variance since Xi+iX2 and Xi-\-iX3 have to be two-dimen-

sional r.r.v.'s. For the same reason the odd moments of the Xi must

vanish.

Now assume the theorem to be false. Then we may define the three-

dimensional random variables X(1) = {Xi, X2, X3}, X(2) = {X2, X3, Xi},

and X(3) = {X3, Xu X2). We may assume (the theorem being assumed

false), that X(1) is a r.r.v. with independent components, and that at

least one of these components is not normally distributed. It follows

that X<» and X(3) are also r.r.v.'s. Now X™, X<*\ X<» are taken to be

independent, and we form F = X(1>+X(2)-f-X(3>. The argument used

to prove Theorem 1 shows that Y is a r.r.v. It follows from the defini-

tion of Y that its components are independent and identically dis-

tributed. Each component Yi = Xi+X2+X3 (i = l, 2, 3) is the sum

of three independent random variables which are not all normal. By

a well-known theorem due to Cramer [5] the distribution of the

Yi (i = l, 2, 3) can therefore not be normal.

So far it has been shown that, if the theorem is false, then there

exists a r.r.v. Y with independent identically distributed, non-normal

components. The proof will now be completed by assuming that

X= {Xi, X2, X3] is a r.r.v. with independent, identically distributed

components, and by showing that the Xi must be normal. As men-

tioned, we shall also assume that E(Xi) =0 and we may even postu-

late that X has been normalized so that E(X%) =1. Let

[Xi x2 "|n

-1-h ix3\ .
2i/2     21'2 J
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It can be checked that the u„(x) are harmonic polynomials. By equa-

tion (5.1) we have

(5.2) E[un(X)] = 0, n=l, 2, 3, •••.

It is easily verified that (5.2) holds for m = 2 and for all odd n (since

odd moments of the Xi are zero). The second moment of the Xt hav-

ing been fixed in advance, we shall now show that equation (5.2)

uniquely determines the other moments £pf?*]. For assume that

£[Z*] has been uniquely determined by our assumptions for k = l,

2, ■ ■ ■ , 2p — 1. Then (5.2) for the case n~2p can be written in the

form

(5.3) Ap + E[2~PX\P + 2~VX\V + (-l)V,*] = 0,

where Ap is a function of the known moments of order up to and in-

cluding 2p — l. Equation (5.3) now determines £[X2p] uniquely, and

the next moment, being an odd moment, is zero. By induction it fol-

lows that all the moments of the Xi (t = l, 2, 3) are uniquely deter-

mined by our assumptions.

Not all random variables are uniquely determined by their mo-

ments, but the normal ones are. We have seen that, because of its radial

symmetry, X= [X\, X2, X3} is a r.r.v. which satisfies our assumption

if each X,- is normal with mean zero and variance one. Hence its

moments are those determined recursively by equation (5.3), and the

proof is complete.

Recapitulating, Theorem 5 states that if

/OO /* °° n• • •   I     u(xi, x2, ■ ■ ■ , xn) IT dXiFi(xi — a,)
J -« *-i

= u(ah a2, ■ ■ ■ , an),        n ^ 3,

for a class of harmonic functions u(x) containing the harmonic poly-

nomials, then the distribution functions Fi(x) are all of the form

1      r1""2 r       1     "I
(5.5)     Fi(x) = 2j exp I  - —s2 I ds,      i = 1, 2,   ■ • ■, n,

where t>0 is their common variance. We shall now show that the

converse is also true, indeed for M<^1, in the following sense: If (5.4)

holds, with the Ft(x) given by (5.5) for a function u(x), then u(x)

must be a harmonic function. This is reexpressed in

Theorem 6. Let X= {Xi, • • • , X„) be the vector random variable

whose components are mutually independent and normal with mean zero

and variance one. Let u(x) be a complex valued function of x= [Xi, ■ ■ ■ ,
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xn} such that

(5.6) E[\ u(tU2X + a) \] < °o  for all t ^ 0, andalla = {au ■ • • , an},

(5.7) E[u(tV2X + a)] = u(a)   for all I = 0, and alia = {ai, ■■■, a„\.

Then u(x) is an entire harmonic function.

Proof. The assumption (5.7) of the theorem is equivalent to (5.4),

with Fi(x) (i = l, 2, • • • , n) given by (5.5). Let Va be the Laplacian

operator

d2 a2
v2 =-h ■ • • H-

"      da\ dal

By assumption (5.6) of the theorem we may apply Va to the left side

of (5.4) and justify an interchange of the order of differentiation and

integration. We obtain

fK ■■■   r°°M(x)va II ^(x, - ai) = V>(a).
J —00 J — 00 t—1

But by (5.5)

Va i\Fi(Xi - ai) = 2 — t[Fi(xi - ai).
»-i dt ,=i

Hence

2— \ \    u(x) II dxFi(xi - ai) m V>(a).
dt    J -jo J -oo <=1

The left-hand side vanishes by our assumption (5.7), so that

vaM(a) = 0   for all   a = {ai, ■ ■ ■ , a„}.

This completes the proof.
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