
SYLOW ^-SUBGROUPS OF THE GENERAL LINEAR GROUP
OVER FINITE FIELDS OF CHARACTERISTIC p

A. J. WEIR

If K is the finite field GF(q) with q = pk elements then the general

linear group GL„(K) has order

9»(n-l)/2(fl _   1)  . . .  (o„ _  !)!

Let dj denote the matrix with the 1 of X in the (i, j) position and 0

elsewhere; we shall call any matrix of the form l+23,<y aifia

l-triangular. The group G„ of all 1-triangular matrices in GLn(K)

is a Sylow ^-subgroup of GL„(K). We shall often write G for Gn if

this is unambiguous, p is assumed throughout to be an odd prime.

The generators 1 +aei, i+i and the fundamental relations connecting

them are studied carefully in a recent paper by Pavlov2 (for the

particular case q=p) and we have therefore mentioned them briefly

in the opening paragraph.

When i<j the group Ptj of all l+ae.-y (a^K) is isomorphic to the

additive group of K. Any subgroup P of G generated by these PtJ-

is characterised by a partition diagram \P\. These partition dia-

grams bear a strong resemblance to the row of "hauteurs" which de-

fine the "sous-groupes parallelotopiques" of the Sylow ^-subgroups of

the symmetric groups on pn symbols, studied by Kaloujnine.3 A

necessary and sufficient condition is given for the partition subgroup

P to be normal in G and if P' = (P, G), P*/P = centre of G/P, the

duality between P' and P* is emphasised by constructing their parti-

tion diagrams.

Certain "diagonal" automorphisms are introduced and used to

prove that any characteristic subgroup of G is a normal partition sub-

group. The maximal abelian normal subgroups are fully investigated

and used in conjunction with the symmetry about the second diagonal

to give a simple combinatorial proof that the characteristic subgroups

of G are precisely those given by symmetric normal partitions. In

the last section we finally identify the group of automorphisms of G.
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This paper is substantially the content of Chapter 5 of my Cam-

bridge University Ph.D. Thesis (1953) and I should like to acknowl-
edge here my gratitude to Professor Philip Hall who supervised this

research in such a kind and encouraging way.

1. Generators of Gn.

(eik if j = h,
enehk =  < ., .

lO if j j* h.

If -4 = l+£*</ aifiij, then r,= JJ3>. (l+a,je„) = 1+ £,>, a„e,y
has the same 5th row as A. Then rn^irn_2 ■ ■ ■ rt=A. Thus the set of

all 1+aeij (a^K, i<j) generate G.

Further if u<v<w, a, 6£i£, we have the fundamental commutator

relation

(1) (1 + aeuv, 1 + bevm) = 1 + abeuul.

Putting 6 = 1; u=i, v—i+1 and w=i+2, i+3, • • • in succession

we see that the set of elements l+ae,-,,-+i (a^K; i = l, • • • , n — 1)

generate the group G„.

2. The lower central series of Gn. We define Hk to be the set of

all A for which a,, = 0 for 0<j—i<k. If we write 0o>0i> ■ ■ ■ forthe

derived series of G we have the following

Theorem 1. (i) The lower central series of Gn coincides with the series

Hi>H2> ■ ■ ■ >Hn = l.

(ii)  (Hk, Hm) —Hk+m-

(iii) 8k=H2k.

Proof. Let Vk be the set of all L for which l+L^Hk. We verify

immediately that Vk VmQ Vk+m. It follows that Hk is a group. Moreover

if 1+ZGG, then 1—L+L2 ■ ■ ■ terminates and must therefore be

(1+L)~\
Say A = 1+L Gft and B = 1 + M^Hm then

(A, B) = (1 + L)~1{(1 + M)-1 + L- ML + 02m+*}(l + M)

= (1+ L)~l{l +L + LM - ML + 02m+k)

= 1 + LM - ML + 02m+h + 02k+m

= 1 + Ok+m, where Ok denotes "some element of Vk."

In other word (Hk, Hm) CHk+m.

Hk is generated (with some generators to spare, in general) by the

set of all 1+aijeij (aij(zK,j — i^:k). If now w — u^k+m we may find

v so that v — u^k and w — v^m, and we obtain the generators of
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Hk+m in the form 1 +aeUV! = (1 +aeuv, 1 +«,„). Hence (Hk, Hm)DHk+m,

and so finally (Hk, Hn) =Hk+m.

In particular (Hm, Hi)=Hm+i. Since HX = G, H\>H2> • • • >Hn

= 1 is the lower central series of Gn.

The third part of the theorem follows immediately from the second

by induction.

3. The partition subgroups. If i<j the group PiS of all f+aea

(a£if) is isomorphic to the additive group of K and so is elementary

abelian of order q. Any subgroup P of G generated by a selection of

these Pa is called a partition subgroup. Such a subgroup may be char-

acterised by a "partition" diagram | P\ in the natural way. For exam-

ple (if m^4) the group generated by Pi2 and P24 contains also the

subgroup Ph and \P\ consists of the squares (1, 2), (2, 4), (1, 4). The

sequence of diagrams for the lower central series is obtained from the

whole diagram (representing G) by removing successive diagonals

i-i-1,2, •••.

Theorem 2. A necessary and sufficient condition for the partition

subgroup P to be normal in G is that the boundary of \ P \ should move

monotonically downward and to the right.

Proof. If N is the least normal subgroup containing 1+aeij, by

the identity (1) it is clear that N must also contain Puj and P,-„ where

u<i and v>j. Further since PivQN we have PUVC.N where u<i,

v>j. If \Nn\ consists of the squares (m, v) with u^i, v^j and if

| N'tj\ is | Nij\ omitting (i,j), then N must contain N^. The least nor-

mal subgroup containing Ptj is Ni,. We shall find it convenient to

refer to this process as "completing the rectangle." Now if P is any

normal partition subgroup and if (i, j) is any square in |P|, then P

must contain AT,-,-. Conversely, the product of several Ni, is a normal

subgroup of G. These remarks are equivalent to the statement of the

theorem.

Given two distinct squares (i,j), (u,v) in \G\ ; if m^i, vj^j we shall

say (i, j) covers (u, v). When \P\ is a normal partition we shall say

\p\ covers (m, v) if some square of \P\ covers (m, v). If (u, v) covers

some square outside |P| we shall say (u, v) avoids \P\.

When P is a normal partition subgroup we may define the groups

P' = (P, G) and P* where P*/P = centre of G/P. Then P' and P*

are again normal partition subgroups. More precisely

Theorem 3. |P'| consists of the squares covered by \P\, and \P*\

consists of the squares which do not avoid \P\-

Proof. Let | N\ be the set of squares covered by | P\. By the proc-
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ess of completing the rectangle we see that P' contains N.

Now N is the product of normal subgroups Ny and so is normal. If

(*ii)£|-P| i then (1+adj, l+bekm)GN. Any commutator (z, t) where-

zG?, 2EG may be expanded by application of the rule (xy, rs)

= (x, s)"(x, r)'v(y, r)"(y, s).* Hence (P, G)CN.

Let | P\ be the set of squares which do not avoid \P\. We obtain

| P\ by adding one square to each row of \P\ except when this new

square covers a square outside \P\. Clearly (P, G)(ZP. If A=l

+ 2^.<yaijdj^P then a<j^0 for some (i,j) avoiding \P\ and (A, G)

(£P. Hence P = P*. [We notice that the notation N'fJ already used is

consistent with that of Theorem 3.]

Theorem 3 shows how strong is the duality between the groups P'

and P*. In particular we have as an immediate corollary

Theorem 4. The upper and lower central series of G coincide.

4. The diagonal automorphisms. If W is the diagonal matrix

Wi

V)l

in GLn(K) and ̂ 4=1+ 23*<; aiye.jGGn, then W~XA W= 1 + 23«y a*«.j
where a* = wr^ijWj. Let D be the group of all such W.

Proposition. DGn is the normalizer of Gn in GLn(K).

Proof. Clearly DGn is contained in this normalizer.

Suppose M = jTsi.i bijdj where 6„„^0 («>z>), and v is as small as

possible with respect to this property.

On the one hand (1 +evu)M = M + 2Zy 6UJe„j and this differs from M

in the (v, v) position. On the other hand M(l + ^r<s arsers) has in the

(v, v) position the element 6,,-f- /.bvr ?.r^v arv = bvv since the choice

of bUv implies that 6„r = 0 for all r <v. Now l+evu(£Gn and we have

shown that M-l(l+evu)M(£Gn. Thus M does not belong to the

normalizer of G„ in GL„(K).

Any automorphism of G of the form A—^W^A W where WElD is

called a diagonal automorphism. Let D be the group of all diagonal

automorphisms.

5. The normal partition subgroups. It is now possible to prove the
following

4 P. Hall, A contribution to the theory of groups of prime-power order, Proc. London

Math. Soc. vol. 36 (1933).
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Theorem 5. Any subgroup of G which is invariant under the inner

and diagonal automorphisms is a normal partition subgroup.

Proof. Any matrix of Gn+i is expressible in the form

where A £G„ and a is a row with elements in K.

The group of all V is elementary abelian of order qn and is normal

in Gn+v In this way it is possible to express Gn+i as the split extension

Gn+i^GnH (G„fW=l).
The theorem is true for G2 and we assume it to be true for G„.

Suppose R is a subgroup of Gn+i which is invariant under the inner

and diagonal automorphisms of Gn+i- Then RC\Gn is a subgroup of

Gn which is invariant under the inner and diagonal automorphisms

of Gn and so by the induction hypothesis is a normal partition sub-

group of G».

Rf~\H is a subgroup of H which is normal in G„+i and invariant un-

der diagonal automorphisms. Hence H is of the form N\j. {If

a = (ct2, ■ • ■ , ctn+i) and a^O then H contains Pi,n+i, Pin, ■ • ■ , Piy-}

It is now sufficient to show that R = (Rr\Gn) (Rt~\H) for then the

theorem follows by induction.

Clearly PD(PnG„)(Pr\rT). The most general element of R is of

the form

(o  ")C  °)'VV-   say'

-co
then

W'WVW = UV2£R (p* 2).

Hence U, F£P. In other words RC{RC\Gn){Rr\H).

Remark. Since the diagonal automorphisms clearly leave invariant

any partition subgroup, the converse of Theorem 5 is also true and

so we may characterise the normal partition subgroups as those which

are left invariant by the inner and diagonal automorphisms.

There is a further important automorphism of G„ which we may

regard as a symmetry about the second diagonal:
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t:    1 + ]£ aijCij—* 1 + ^ bij-eij   where   6,,- = an+i-j,«+\-i'

In view of this we have the important

Corollary. Every characteristic subgroup of G is a "symmetric"

normal partition subgroup.

6. The maximal abelian normal subgroups. The derived group

8i of G gives the maximal abelian quotient group. A natural dual of

0i would be a maximal abelian normal subgroup.6 We shall determine

the set of all maximal abelian normal subgroups of G.

If Ai = Ni,i+i (i = l, 2, • • • , n — 1) then At is clearly a normal (par-

tition) subgroup. If (u, v) and («', »')£|-<M then u'^i<v and

(P*„, PU'v') =1. Hence Ai is abelian. If z(£Ai, that is if

z == i -f- / , autteuv

and   some   auv^0   where   u>i  or  v^i,   then   G£[z, -4,-]   is   not

abelian.

(i) Say u>i. (1 — e,-u)z(l+«,-„) differs from 2 in (i, ») position.

(ii) Say v^i. (1 — ev,i+i)z(l+ev,i+i) differs from z in the (u, i+1)

position.

We have now shown that A ,■ is a maximal abelian normal subgroup

of Gn (i = l, 2, ■ ■ ■ ,n-l).

A necessary and sufficient condition for x£G to belong to a maxi-

mal abelian normal subgroup of G is that x should commute with all

its conjugates in G.

Consider C73: if x^l+en+e^ then x commutes with its conju-

gates all of which have the form x+aeu and so x is in a maximal

abelian normal subgroup (clearly neither .4i nor A2). Though the At

are the only partition subgroups which are maximal abelian normal

we must expect other types of maximal abelian normal subgroups in

general.

Suppose

1 + L = 1 + 2L <*u»eu„ (auv €E K),

1 + M = 1 + X) ouveuv (buv G K)
t*<t>

then (1+L)(1+M)=1+L + M+LM and so 1+L, 1+M commute
if and only if L, M commute.

Now

(1 - eii)(l +L)(1 + eij) = 1 + L + Leu ~ ei3L

6 H. Zassenhaus, The theory of groups, Chelsea, 1949, Chap. IV, 3.4, p. 115.
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since «</£«*,■ = 0. Suppose 1+Z belongs to a maximal abelian normal

subgroup; then we require L to commute with Le<,~c</L, in other

words we require LeijL — eijL2-L2eij+LeijL = 0 or 2LeijL—eiiL2

+L2eij. Now

■Lfit/ =  / . auieuj, eijLt       / . ajveiV.

»<• /<»

Hence we require

2 2-i 2-i auiajteut =   ^ ajvavteit -\-    2-i    awuaUieWj.
j<t  «<» j<v<t w<u<i

Each of these three sums belongs to a separate part of the partition

diagram of G, and so they all vanish [p^2].

We thus have the following three sets of equations:

(i) Oi,-o/,/+i = au-dj,)+i = • • • = au-ajn = 0 ,

a2»'aj,i+i = an'0'j,i+2 = • • • = a2i-aj„ = 0,

a«_j.,-<jy,;-.fi = a.-2,tflj,y+2 = • • • = ai-2,iajn — 0,

fli-i.jffy.y+i = flt-i.ifly.y+z = • • • = a,_i,jij;„ = 0,

(h) «y.;+i«j+i,;'+2 = 0,

ay.;+i0j'+i,j'+3 + ai.i+2ai+2.i+3 = 0,

.i

ay.3+lay+l.n 4"  <J>,J+2ay+2,n +   •   •  ■   + fl/,n-10n-l,n  =  0,

(iii)        Oi2o2< + ai3<i3.- + • • • + Oi.t-idt-i.t = 0,

a23a3i + • • • + a2,i-i«.-i,i = 0,

,

Oi_3,,-_2ai_2,i + a;_3,j_ia<_i,i = 0,

ffl«-s,._i #i-i,t = 0,

If there is one element auv in the diagonal v — m = 1 which does not

vanish, then by the last equation of (i) every other element in the

same diagonal which is not adjacent to (m, v) must vanish, also the

first equation of (ii) or the last equation of (iii) show that the adjacent

ones vanish. Hence if 1+ £u<d auveuv belongs to a maximal abelian

normal subgroup and has one nonzero element in the diagonal

v — m = 1, then all the other elements in this diagonal vanish.

Suppose now that the vih column is the first which is not composed

entirely of zeros and cu„ the last nonvanishing element of it. In other
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words auvf^O and aJ; = 0 if j<v and also if j = v, i>u. It v = n, 1+L

G^4n-i so we assume v<n.

There are two cases to consider: (a) u>l, (b) « = 1.

(a) We may take i=v in (i) and this gives auvaj,j+i = auva,j,j+2

= • • • =0 provided j >v. Thus a„=0 whenever r>v.

Take j — u in (ii), then in the equation

#u,u+luV|-l,m T   -   '  -   +  QuvQvm +  ' ' '   + Qu,m— l#m— l,m  =  0

all the ar, for which s<v vanish by our choice of auv, and all the ar,

for which r>v vanish by the result we have just proved. Thus

avm = 0 (all m>v).

Finally we have ar, =0 whenever r = t>, and we now see that in this

case 1+L£i,_i.

(b) We may take i = v in (i) and we find just as before that ar, = 0

whenever r>v.

The first equation of (iii) is

«i2ff2i + dizcta + ■ • • + aivQvi + • • • + ai,i-iai-i,i = 0.

Now ai2= • • • =ai,c_i = 0 by our choice of auv, and a„ =0 whenever

r>v by above, so that only one term remains in the equation. Thus

avi = 0 (v<i<n).

Finally aT, = 0 whenever r=z> except possibly avn. If a„„ = 0, then

just as before l+Z<£^4t>-i.

However in fact a„„ need not be zero and each of its possible q — 1

nonzero values gives us a new maximal abelian normal subgroup.

Any normal subgroup containing for example x = l+eu+cevn must

contain all the conjugates of x in G. Now x~x— l—eiv—cevn+cein and

(1 — aevv,)x(l+aevw) =x+aelw. Hence any normal subgroup contain-

ing x must contain all 1 +aeiw for w>v, a^K and similarly must con-

tain all l+aewn for w<v, aQ.K.

Suppose now that y belongs to an abelian normal subgroup contain-

ing x, and say y = 1 + 2Z«> difiij. Then y must commute with x and

also with 1+eiu, (all w>v) and l+ewn (all w<v). This shows that

a„ = 0 if r^v, also if s^v, except possibly a^^O or avn^0 but in

this case cau=avn.

Thus Nv(c) =Gp[l+aeiv+caev„, (a£;K)] Arr_i,v+i is the unique

maximal abelian normal subgroup containing x.

The results of this section may be summarised in

Theorem 6. The maximal abelian normal subgroups of Gn fall into

two distinct classes:

Ai=Ni.i+i («- 1,2, ••-,»- 1),
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Nv(c), where   c 9* 0, c G K, (v = 2, • • • , [n + 1/2]).

7. The characteristic subgroups. We have the following funda-

mental

Theorem 7. The characteristic subgroups of G are precisely the nor-

mal partition subgroups whose partitions are symmetric about the second

diagonal.

Proof. We consider the effect of an automorphism 8 on the maxi-

mal abelian normal subgroups. Certainly it is clear that these must be

permuted among themselves. All of the "exceptional" maximal abe-

lian normal subgroups Nv(c) except for v = 2 are contained in H2 and

H2 is characteristic in G. Also no Ai is contained in H2 so we expect

the Ai (Ki<n — 1) to be permuted by 6. These A, divide naturally

into pairs of groups with the same order, and for example we see that

^42 transforms under 6 into itself or into An-2- Moreover 6 leaves A2

invariant if and only if 6 leaves A„-2 invariant. Hence both A2An-2

and Ar2,„_i=^42r^^4n_2 are characteristic subgroups of G„.

The join of Ai, An-i and N2(c) is just AiA„-i and this again is

characteristic in G„.

If we write r' = n + l — r, then t sends Pr, into PS'rf- Any symmetric

normal partition subgroup may be built up as a join of NrsN,>r'

(r = 1, 2, • • • )• But these may all be obtained as intersections of

groups which we have shown to be characteristic. For example we

intersect A-^n-2 successively with A$An-3, AnAn—i, • • • and then

the square partition subgroups A7™.' to obtain every A72,A7,',„_i. Com-

bining these results with the corollary to Theorem 5 we have the

above theorem.

8. The automorphisms of G„. Since the automorphisms of G have

been completely determined by Palov2 for the case of a ground field

with p elements, we shall sketch the parts of this section which are

merely generalizations of his work, and we shall also try as far as pos-

sible to use his notation.

The group 3 of inner automorphisms is isomorphic to Gn/Hn-\ and

so has order q{n -»-«/*.

The diagonal automorphism induced by the diagonal matrix W is

the identity if and only if W is a scalar matrx. Hence © has order

(ff-1)-1.
The ground field K may be regarded as a vector space of dimension

ft over the field GF(p) of integers mod p. Let oi, • ■ ■ , a* be a basis.

The group GLk(p) of all nonsingular linear transformations of K in-

duces a group «£ of automorphisms of G: if g€zGLk(p) then 7 is the
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induced automorphism which maps the generators l+a<er,r+i into

l+a'ter,r+i (i = l, • ■ • , k;r = l, ■ ■ ■ , n-1).

^flD consists of the automorphisms induced by matrices of D of

the form

a

a2
a^0,aEK.

a"

For each i=l, • ■ • , k; r = l, • ■ ■ , n — 1 there is a central auto-

morphism tt which maps the one generator 1 +a<fcv,r+i into 1 +a.er,r+i

+6<ei„ (where 6, is an arbitrary element of K), and leaves the other

generators invariant. For r = 1 and r = n — l these are already inner

automorphisms. Let Z be the group generated by tJ (»* = 1, • • • , k;

r = 2, ■ • • , n — 2), then Z is elementary abelian of order qHn-%).

There are two types of extremal automorphisms

0-1(6): 1 + aeu —> 1 + aei2 + abe2n (b G K),

and

0-2(6): 1 + aen-i,n —► 1 + ae„_i,„ + a6ei,„_i (6 G K).

The group V generated by the extremal automorphisms is elementary

abelian of order q2. We write CP = %V. (This is a direct product.)

Theorem 8. The group zA of all automorphisms of G is generated by

the subgroups [r], .£, O, 3, CP.

Proof. If a is an automorphism which leaves H2 elementwise in-

variant and which induces the identity automorphism on G/H2, then

a may be obtained by multiplying each element of G„ by an element

in the centre (Hn-2) of H2.e The central automorphisms are clearly of

this type.

If (1 +er,r+i)a = 1 +eT,r+i+be2n and r>l, by commuting with l+e«

we find an element in H2 which is not invariant unless 6 = 0.

If (l+ei2)a = l+ei2+6e2n, then since l+ei2, l+aei2 commute we

must have (l+aei2)a = l+aei2+c6e2n. There is a similar argument

involving l+aen^i,„. It is now clear that aGf.

It remains to be shown that if a is any automorphism of G then we

may (simultaneously) copy the effect of a on H2 and on G/H2 using

only the automorphisms" of [r], «£, *D and 3.

Under an automorphism a the subgroups A < are either all left in-

' H. Zassenhaus, The theory of groups, Chap. 2, Exercise 6, p. 78.
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variant or are all reflected in the second diagonal. By multiplying by

r if necessary we may assume that a leaves each A, invariant.

If (l+aei2)<" = l+aei2+ • ■ • (where the extra terms are in Ni3)

then {l + (ra-f-.s6)ei2}a = l-|-(rd-|-55)ei2-f- • • • where r, s are integers

mod p. Hence a induces a linear transformation c—>5 of the vector

space K.

The set {l+aiCr,r+i; (* = 1, ■ • • , ft; r = 1, ■ • • , n — 1) j is a minimal

system of generators of G„. Hence {(l-f-a;ei2)a; (* = 1, • • • , ft)} is

part of a minimal system of generators of G„ and di, ■ ■ ■ , ak is again

a basis of the vector space K. The linear transformation a—>a is thus

nonsingular.

If {\-\-ae23)a = \Jra'e23+ ■ ■ • , a—*a' is again a linear transforma-

tion of K. Now the commutator (1 +aeu, 1 -\-be23) = 1 +abei3 has the

same value if we interchange a and b, and so l+db'ei3-\- ■ ■ ■

= l+a'beu+ • • • . If b^O, since Nn cannot map into NX3 and A7M

cannot map into N^ neither h nor b' vanishes and a/b~=a'/b'. The

effect of a on Pu is thus the same as the effect on P23 apart from a

constant factor. Since we may use a diagonal automorphism to give

the required constant factors in P23, P34, • • • , P„-i,n there is an ele-

ment p° of *Q£) which has the same effect as a on G„ mod H2. Let us

divide through by /3 and assume that a induces the identity on G/H2.

We now look for an inner automorphism which has the same effect

as a on H2.

If, under a, 1 +e23^>l +e23+fe13+ae2i (mod H3) then by commuting

with l+den we see that l+dei3—>l+deu+daeu (mod Hi) (all d(EK).

We transform by \+ae3i. This transformation also sends 1+646—+1

+£«— ae&, (mod Hi) and l+e47—>1 -\-en~ae3i (mod Hi) but this is a

necessary contribution since 1+ew, 1+^46 commute and 1+C67—>1

+e67 (mod H2).

If, under a, l+e2i—*l+e2i-\-be2i+ceu (mod Hi) we transform by

l-\-bea — ce\2. This transformation also affects l+e67 and 1+ess but

here again there is a necessary contribution.

By such inner automorphisms using elements in P<y, j—i = l, we

copy the effect of a on Pij(j—i = 2) mod .fl^and Pi, (j—i = 3) mod Hi.

Since H2 is generated by the P^ for whichj —i = 2, 3 we finally obtain

an inner automorphism which has the same effect as a on H2 by trans-

forming successively by elements in Pi„j — i = \, 2, 3, • • • . This com-

pletes the proof of Theorem 8.
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