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1. Several procedures have been devised to establish the existence

of an invariant mean for almost periodic functions on a group (see

[l; 3; 4; 5]).1 The object of the present short note is to prove this

basic result concerning such functions in another way. Throughout

what follows the formula <j>(x): A—*B regarding a function </>(x) will be

used to imply that <p(x) is defined on a set A and has a subset of B

as its range.

2. Let G be a group and £ be a complete, locally convex, topologi-

cal linear space. In accordance with A. Weil's method (see [6]) we

can associate a compact topological group G with G so that every

almost periodic function <p(x): G—>£ in the sense of Bochner-von

Neumann (see [l]) can be written in the following fashion: <p(x)

= $(0(x)), where 9(x): G-+G is a fixed homomorphism, which is in-

dependent of <p, and $(x): G—>E is a continuous function correspond-

ing to <j>. Therefore, without loss of generality, we may regard G it-

self as a compact topological group and <j>(x) as a continuous function

on it. Denote by E° the linear space consisting of all continuous func-

tions <p(x): G—*E, and by { (7x|\(EA} a fundamental system of neigh-

borhoods around the zero of E. It is known that a complete, locally

convex, linear topology is introduced into E° by adopting { V\\ X£A}

as a fundamental system of neighborhoods around the zero of Ea,

where 7X= {<t>\<p(G)EUx}. Set L4,= {<p(ax)\aEG) for a 4>EE°, and

denote by K+ the closure of the convex hull of L$; then we obtain a

compact convex subset K+ of Ea. The result to be proved is

Invariant Mean-Value Theorem. For every <f>EE°, K$ contains

a constant-valued function.

To this end we shall first establish

Fixed-Point Theorem. Let K be a compact convex subset lying in a

locally convex, topological linear space E. Given a continuous mapping

$(x): K-+K, which is convex linear, i.e. $(aiXi-\-a2x2)=cti$(xi)

+a2<f>(x2) for xi, x2EK, cti, a2^0, ai+a2 = l, so <£> admits fixed-points.
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1 Besides the articles referred to herewith a useful tool for this purpose is the mean

ergodic theorem achieved by F. Riesz, K. Yoshida, S. Kakutani and other authors.
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Proof. The result could be obviously obtained by applying

Tychonoff's fixed-point theorem without referring to convex-linear-

ity. We shall give, however, a much simpler proof corresponding to

this additional assumption. Set indeed ^(x) =x—$(x). The mapping

^(x): K—>E is also continuous and convex linear so that ^(K) is a

compact convex subset. If 0^.^(K), there exists a continous linear

functional / such that/(x) >0 on ^r(K). Choose one point *£X with

minZ£Kf(x) =f(x), and set y* = x—$(*). Hence f($)=f(x—$(x))

=/(*) —/(*(*)) ^0, leading to a contradiction. Thus OE^(K), which

was to be shown.2

Proof of the invariant mean-value theorem. Denote by

®={Ayy£;T} the family of all finite subsets Ay of G. Let

Ay= {at i = l, 2, ••-, m), and consider the mapping ^—KP(^)

= (l/m) E&><: K^—^K^,, where Tpa(x) =\J/(ax). This mapping is obvi-

ously continuous and convex-linear so that there exists a point i/' in

A^with ^=$(f). Denote further by 53= {Pj|o£A} the family of all

finite subsets Bi of the conjugate space E* of E. Setting F(y) = (fi(y),

hiy), • • ■ , fn(y)) for a Pj= {/y|i=l, 2, •••,«}, we obtain a con-

tinuous linear mapping F(y): E^>En, where E„ is an w-dimensional

Euclidean space. For a point 2£P„ let ||2|| denote the usual Euclidean

norm. As ij/(x)=(l/m) E&.C*) f°r all x£G, we have also F(\(/(x))

= (l/m) E^GM*)) for all xGG.
Choose a point xGG such that maxIp(j||F(^(x))[l =[|F(^(^))||.

Then \\F(+(x)) | =g(l/m) Ell Wa'*))!! =(!/»») £|| W«i*))|| so
that ||F(*(*))||=| F(fai(x))\\ (i = l, 2, • ■ • , m), because ||P(iK*))||
^||F(^(a,*))|| (»=1, 2, ■ ■ ■ ,m). Therefore the m + 1 points F(\p(x)),

F(yf/ai(x)) (t = l, 2, • • • , m) together lie on a sphere (possibly of

radius zero). The equation F(\p(x)) —(1/m) ^,F(\f/ai(x)) implies then

that F(t(x))=F(*ai(x)) (» = 1, 2, • • • , m).

Set now Ny.t = {(#, x) \f(*(x)) =/(*.(*)), aGAy, fGB,}.
For every (7, 5)£rxA, Nyj is closed in the cartesian product

K+XG, since the mapping (\p, x)—>\f/(x): K+XG^E is continuous.

Thus we obtain a family of closed subsets {-fy"?.*! (7, 5)£rxA} jn

KtXG, which admits in addition the finite intersection property. In

view of the compactness of K^XG this implies that n^.sierxAAV.j?^.

Choose a point (\p, x) belonging to all A^s's. We have thus /(^(z))

=f(\l/a(x)) for any aGG, /££*, so that ^(x) =\{/(ax) for any aEG,

yielding a constant-valued function yj/GK^, as was to be shown.

The uniqueness of mean-value is easily seen in the same fashion as

usual.

! Cf. Appendice to [2l.
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3. A direct application of the theorem will be described below. Let

G be a compact topological group and E be the Banach space con-

sisting of all continuous numerical functions/on G with

||/||= sup |/(*) |
xsa

as the norm. As is known, every regular Borel measure p, over G can

be regarded as a point in the conjugate space E* of E and vice versa.

Choose an arbitrary p.EE*. Defining Pv(f) = u(fa), <f>(x)=p,K, we

have a continuous function <p(x): G—*E*, the continuity being viewed

from the standpoint of the weak topology of E* induced by E, so

that the invariant mean-value theorem applies to it. Hence Kt con-

tains a constant-valued function \f>(x) =12, which represents an in-

variant measure over G. If one starts from a positive, nontrivial p., the

resulting measure is nothing but a Haar measure. Furthermore, if

the starting measure is in particular such a measure as assigns to a

point in G the probability measure 1, one obtains the classical result:

if a finite number of numerical almost periodic functions f(x) on a

group G are given, their respective means can be uniformly and

simultaneously approximated by functions of the form: y^ja,f(ajx).

ctis^O, X/*< = 1 with the same a,-'s and a<'s.

4. In contrast with the argument of the example in the appendix

to [2], where the commutativity assumption is basic, intensive use

was made of the compactness of G in the fixed-point method described

above to overcome the main difficulty due to the situation that G is

not necessarily abelian.

References

1. S. Bochner and J. von Neumann, Almost periodic functions in groups. II, Trans'

Amer. Math. Soc. vol. 37 (1935).
2. N. Bourbaki, EUments de mathimatiques. Book V. Espaces vectoriels topolo-

giques, 1953, especially Appendice.

3. S. Iyanaga and K. Kodaira, On the theory of almost periodic functions in a group,

Proc. Imp. Acad. Tokyo vol. 16 (1940).

4. W. Maak, Eine neue Definition der fastperiodischen Funktionen, Abh. Math.

Sem. Hamburgischen Univ. vol. 11 (1935).

5. J. von Neumann, Almost periodic functions in a group. I, Trans. Amer. Math.

Soc. vol. 36 (1934).
6. A. Weil, Vintegration dans les groupes topologiques et ses applications, 1940.

Tokyo College of Science


