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ful counting shows that B is empty.) The seven-person game, k=2,
is well known.

Added in proof. The 15 solutions mentioned at the end of §3 are
main simple, with x;=0. The projective plane games and their solu-
tions Viy1 were previously described in an unpublished paper of
Moses Richardson.
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According to the usual definition of homogeneity, a point set M is
said to be homogeneous if for any two points x and y of M there is a
homeomorphism of M onto itself carrying x into y. Some more general
types of homogeneity previously defined in [2] will be studied in this
paper, and it will be shown that there is a certain type of homogeneity
such that every decomposable compact metric continuum possessing
it is a simple closed curve. For bounded plane continua possessing
the usual type of homogeneity, this problem has been only partially
solved.! Added in proof. At the Summer Meeting in Laramie, Septem-
ber, 1954, Bing and Jones each presented an example of a decomposa-
ble homogeneous bounded plane continuum which is different from a
simple closed curve [Bull. Amer. Math. Soc. Abstracts 60-6-766 and
60-6-770].

THEOREM 1. If every proper subcontinuum of the compact metric
continuum M 1is nearly homogeneous, then M 1is hereditarily indecom-
posable.?

Proor. Since every subcontinuum of M satisfies the hypothesis of
this theorem, it will be sufficient to show that M is indecomposable.
Suppose that M is decomposable. Then there is some proper sub-
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1 For these results, see [3, Theorem 2], [2, Theorem 8], and other references cited
in [2].

2 An example satisfying the hypothesis of this theorem has been described by Bing

[1].
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continuum H of M such that the closure of M — H does not contain
H. Let x be a point of M —H, and let K be a subcontinuum of M
irreducible from x to H. Since K—K - H is a subset of M —H and K
is the closure of K — K- H, it follows that K does not contain H. Let
y be a point of H— H - K, and let H’ be a subcontinuum of H irreduci-
ble from y to K. Since K is nearly homogeneous and is irreducible
between some two points, it follows from [2, Theorem 4] that K is
indecomposable. Hence some composant of K intersects both H’ and
K—K-H’, and this composant contains a continuum K’ irreducible
from H’ to some point z of K—K-H’. Then H'+ K’ is a proper sub-
continuum of M and is irreducible between y and z. Hence H'+ K’
is nearly homogeneous, and by [2, Theorem 4], it is indecomposable.
This involves a contradiction since both H’ and K’ are proper sub-
continua of H'4+K'. Hence M is indecomposable.

THEOREM 2. If M is a decomposable compact metric continuum such
that for every two mondegenerate proper subcontinua H and K of M
there is a homeomorphism of M onto itself that carries H onto K, then
M is a simple closed curve.?

Proor. Since M is decomposable, then some proper subcontinuum
of M is not a continuum of condensationt of M. Hence no nondegen-
erate proper subcontinuum of M is a continuum of condensation of
M. This implies that M is locally connected. Clearly M is not an arc,
and since every nondegenerate locally connected compact continuum
which is neither an arc nor a simple closed curve contains both an
arc and a simple triod as proper subsets [5, p. 446], it follows that M
is a simple closed curve.

THEOREM 3. If n>1 and the plane continuum M is nearly n-homo-
geneous and is not locally connected, then M is indecomposable.

A proof for the case in which M is bounded was indicated in [2,
Theorem 9]. If M is unbounded, the method of inversion can be ap-
plied so that the proof is quite similar to the one for the bounded
case.

THEOREM 4. If n>1 and the unbounded continuum M is n-homo-
geneous and is a proper subset of the plane, then M is homeomorphic
with a straight line.

3 Bing [1, Theorem 15] has shown that the requirement that M be decomposable
is necessary.

4 A proper subcontinuum K of M is said to be a continuum of condensation of M
if every point of K is a limit point of M—K.
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Proo¥. The argument used in the proof of [2, Theorem 10] can be
used to show that M is decomposable. Hence by Theorem 3, M is
locally connected. By [2, Theorem 1], M is homogeneous. Mazur-
kiewicz [4, p. 146] has shown that every locally connected unbounded
homogeneous proper subcontinuum of the plane is homeomorphic with
a straight line.
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