
EXTREMAL PROBLEMS FOR STAR MAPPINGS

RAPHAEL M. ROBINSON

The results obtained in §§1-2 are applied in §3 to show that the

maximum possible value of dt{B log/'(z) + C log [/(z)/z]} at a point

Zo of the unit circle, for the class of functions f(z) =z+ • • • which

map |z| <1 conformally onto star-shaped regions, is attained for a

function w=f(z) which maps the unit circle onto the w-plane with

one or two radial slits. In §§4-5, we decide between these two alter-

natives in some cases.

1. A maximum problem. Let tf>(z) and \[/(z) be any two functions

which are regular for \z\ =1. We put

h=£/w(*,)+*(i>A.y
»-1 \ r-l /

and consider the problem of maximizing dtH. The points z, and the

weights p\ are to satisfy the conditions

n

|*|-i,     0, > o,      Lft = i-

The existence of a maximum is clear if an upper bound for n is given.

(First allow weights p\^0, so that the variables range over a closed

set. If some of the weights are zero at the maximum, the correspond-

ing terms may be suppressed.) We shall show that dtH has a maxi-

mum even when no bound for n is given. Throughout, we shall let

n

»—i

Theorem 1. Suppose that the number of terms n and the weights p\

are given. In order to maximize dtH, all the points z, must satisfy the

condition

«[*'(*)+ *'(r)] ̂ o.

Proof. Suppose that the points z, have been chosen on the unit

circle so as to maximize dtH. This choice will also maximize dtH with

respect to all choices of z, such that \z,\ —I. Holding all the other

points fixed, and varying Zi, we see that

Presented to the Society, October 24, 1953; received by the editor? September 14

1953 and, in revised form, July 16, 1954.

364



EXTREMAL PROBLEMS FOR STAR MAPPINGS 365

dH = &i[<j>'(zi)+V($)]dZi.

No value of OZi directed into the unit circle can lead to dH with a

positive real part. Thus if 021 is directed along an outer normal to the

unit circle, the corresponding dH must be positive or zero. In other

words,  [0'(2i)+^'(r)]zi^O.

Corollary 1. In order that all the points z, coincide, it is sufficient

that the transformation w = z[<p'(z)+\l/'(£)] maps\z\ ^1 onto a star-

shaped set in a one-to-one way.

Proof. The map is necessarily strictly star-shaped, and hence

there is only one point on 12| =1 where z[<p'(z) +^'(f) ] ^0.

Remark. These conditions are expressed in terms of an unknown

quantity f. Thus to conclude from Corollary 1 that all the points z„

actually coincide, so that dtH is maximized for n = l, we need to

know that the map of \z\ ^1 by w = z[(p'(z) +$'($)] is star-shaped for

every f in |f| gl.
A function regular for |z| ^1 maps this circle onto a star-shaped

set in a one-to-one way if and only if 3J[z/'(z)//(z)]^0 there and

/'(0) 5^0. Thus the condition required by Corollary 1 is that

9H1 +-^-^—) ^ 0

far |s| £1, and that <p'(0)+&'({) ^0.

Theorem 2. Suppose that <p(z) is regular for \z\ gal, but not of the

form az+b. Then there is a number N, so that for any choice ofi{/(z),n,

and the weights p\, the maximum value of fRH can be attained only

when the number of distinct points z, does not exceed N.

Proof. Each of the points z, must lie on |z| =1, and satisfy the

condition z[<p'(z)+\[/'(Z)] ^0. This condition has the form z[<p'(z)+K~]

^0, where K=il/'(%) is an unknown complex constant. In particular,

z[<p'(z) +K] must be real at each of the points z,; we shall deduce the

desired conclusion from this fact.

Using the condition stated in the above remark, we see that the

function z[<p'(z) +K~] will map 12| gj 1 onto a star-shaped set in a one-

to-one way if K =■$/'($) is sufficiently large in absolute value. In this

case, z[<p'(z) +K~] is positive at just one point and negative at just one

point on j js [ = 1 (and thus, as noted in Corollary 1, all the points z,

coincide.) It remains to consider what happens when |A"| is not so

large.

Can z[cp'(z)+K] be identically real for |z| =1? If so, then applying
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the principle of maximum and minimum to the imaginary part of this

function in \z\ gl, we see that z[<p'(z)+K] is a constant. Putting

z = 0 shows that this constant is zero, and hence d>'(z) = — K, so that

<p(z) — —Kz-\-b, contrary to hypothesis.

At how many points on \z\ =1 can z[<j>'(z)-{-K] be real? This con-

dition is equivalent to

z[<b'(z) + K]= z[$'(z) + K]

or to

z[<f>'(z) + K] = z-l[$'(z~l) + K].

Since both sides are regular for \z\ =1, and they are not identically

equal, there can be only a finite number of solutions.

How does the number of solutions of the above equation vary with

K? Notice that a slight change in K can decrease, but cannot increase,

the number of roots. It follows that the number of roots is bounded if

K is bounded. Since there are exactly two roots when \K\ is large,

the number of roots is therefore bounded for all values of K. Hence

the number of distinct points z, is bounded, the bound depending

only on the function <j>(z).

Remark. If <fi(z) =az+b, then H = <p(t) +^(f). If H is not constant,

then dtH is maximized only for |f | =1, and hence only when all the

points zy coincide. An exceptional case occurs only when <p(z) =az-\-b

and \{/(z) = —az+c. In this case, H = b+c, and the choice of the points

z, is arbitrary.

Corollary 2. The problem of maximizing dtH has a solution even

when n is unrestricted.

We now derive some conditions on the points z, on the assumption

that we have maximized dtH without restricting n.

Theorem 3. For the unrestricted problem, the maximum of

dt[<b(z) + zt'tt)]

on \z\ =1 is attained at each of the points z,.

Proof. It will be sufficient to prove this for v = \. Let zo be any

point on \z\ =1. For Ogegp\, we put

n

ff(«) = t<p(z0) + (0i - t)<t>(zi) + £ 0r<p(zr)
T-i

+lA («o + (/3i - eK + E ft*. J •
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We see that H(0) =H, and

H'(0) = <b(z0) - #(si) + f (m*o - 21).

By hypothesis, 9tr7(e) ^ dlH, since H(e) is a sum similar to H, but

with w-f-1 terms. Hence dtH'(0)^0, and therefore

9t [*(*>) + WOO] ̂  5R I*(«i) + zi*'(f)],

so that dt[<p(z)+z$'(£)] is maximized at Zi.

Remark. As the proof of Theorem 8 shows, the condition of Theo-

rem 3 need not hold if we maximize the value of 'SiH with a pre-

assigned value of n.

Corollary 3. In order that all the points z, coincide, it is sufficient

that the transformation w = (p(z)+z4''(t) maps \z\ gl onto a convex set

in a one-to-one way.

Remark. It is known that an analytic function F(z) defines a one-

to-one convex mapping of the unit circle if and only if zF'(z) defines

a one-to-one star mapping. Hence the conditions of Corollaries 1

and 3 are actually identical.

Theorem 4. For the unrestricted problem, the expression

*[*'(*)+f(fl]
is real, not only at the points z„ but also at additional points on \z\ =1

separating each pair of such points.

Proof. Consider the curve

w = <b(z) + 2^'(f), \z\   =1.

The outer normal at any point has the direction

amp {«[*'(»)+^(f)]},

provided <p'(z) +$'({) 9*0. Thus at any relative maximum or minimum

of dt[<p(z)+zip'(^)] on |z| =1, the quantity z[<p'(z)+\f/'(^)] must cer-

tainly be real. Since the relative maxima and minima must alternate,

and the points zr are among the relative maxima by Theorem 3, we

have the required result. Notice also that at the points z„ which are

in fact absolute maxima, we must have z[<t>'(z)+\(/'(£)]^0, as stated

in Theorem 1.

Remark. It is not clear whether or not the condition of Theorem 4

also holds when the value of n is preassigned.

2. An example. The following example serves as an illustration of

the preceding theorems, and also provides results which will be used
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in later sections. Let

<p(z) = A log (1 + rz),       +(z) = B log (1 + sz),

where 0 <r < 1, 0 <s < 1, and .4 and B are complex numbers, not both

zero. In this case,

H = A J2p,log (1 + rz.) + Blog(l + sJ2M,
r=l \ »=1 /

and we are to maximize dtH subject to the usual conditions. Now

according to Theorem 4, the number of distinct points z„ is at most

half the number of points on \z\ =1 where

/   Ar Bs   \
h(z) = z(-+-)

Vl + rz      1 + st)

is real. We must estimate the number of such points, without knowing

the value of f. As in the proof of Theorem 2, the condition that h(z)

is real on the unit circle reduces to

/   Ar            \        Ar        K
z   -+ K) =-+ —,

\1 + rz /      z + r       z

where K=\p'(%) =Bs/(\ +sf). Clearing of fractions, we have

z2(z + r)[Ar + K(l + rz)] = (1 + rz)[Jrz + K(z + r)].

This is an algebraic equation in z of at most the fourth degree, but

not an identity. Hence it has at most four roots on \z\ =1. It follows

that there are at most two distinct values of z,. Thus the maximum

possible value of dtH is attained for n g 2, and essentially only in this

case.

There are many cases in which we can prove that all the points z,

coincide. In the first place, this is clearly true if A =0. Using the fact

that the function log (1+rz) maps \z\ gl onto a convex set, we see

that the same is true if B =0. Suppose now that A 5*0 and Bt^O. We

shall derive a simple sufficient condition which depends, besides on

the values of r and s, only on the amplitude of A/B.

According to Corollary 1, it is sufficient to show that for any f

with |f| gl, the function h(z) considered above maps \z\ gl onto a

star-shaped set in a one-to-one way. This requires that dt[zh'(z)/h(z) ]

^0 for \z\ gl, and that h'(0)^0. Now

zh'(z) Ar + K(l + rz)2

h(z)    ~ Ar(\ + rz) + tf(l + rz)2
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The reciprocal of this fraction may be written in the form

rz K(l + rz)2      Bs(l + rz)2
1 H-j   where   q =-=-•

1 + q Ar Ar(l + sfi

This quantity will certainly lie in the right half-plane if | l+q\ ^r

which in turn will hold if |amp q\ gir —arc sin r, where the principal

value of the amplitude is taken. Now

amp q = 2 amp (1 + rz) — amp (1 + sf) —amp (A/B).

Since |amp (1 -f-rz) | garc sin r and |amp (l+sf)! =§arc sin s, it will

be sufficient to have

| amp (A/B) \  + 3 arc sin r + arc sin s g jr.

Since this implies |l+<z| ^r, it also yields h'(z) =Ar(l+q)/(l+rz)2

9*0. It is therefore a sufficient condition for the coincidence of all

the points z„ Unless .4/5 <0, it will hold at least when r and 5 are

sufficiently small.

3. Star mappings: the main theorem. We consider functions

f(z) =z+ • • • which are regular and univalent for |2| <1, and which

map the unit circle onto star-shaped regions. We start by showing

how such a function can be approximated by a function which maps

the unit circle onto the w-plane with a finite number of radial slits.

The possibility of such an approximation follows from general theo-

rems on mapping variable regions, but we prefer a method which also

yields a formula for the approximating functions.

It will be sufficient to consider an admissible function f(z) which is

regular for \z\ gl. Let g(z) = zf'(z)/f(z) =1+ ■ ■ ■ , which is also regu-

lar for \z\ gSl. We have 9?g(z)^0 there. By a form of the Poisson

integral formula (compare [4, p. 2]), we have

g(s)=-|    9*«(««)---de.
2ttJ o 1 — ze-'e

Hence

f'(z)       1        1   r2T 2e~iS
-^-= — I     Stg(eie)-de,
f(z)        z       2wJo l-ze-ie

and therefore

f(z)      1   r2* 1
log — - — I     Kg(e")2 log- de.

z        2tJ o 1 — ze-'e
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Approximating the integral by a sum shows that the given function

can be approximated by a function for which

/« A 1
log—=2 Eft log--->

z ,=i 1 — ze-'"'

that is, by a function of the form

/(*) =-,
n

II (1 - ze-ie-)2»'
r=,l

where ft>0 and p\+ • • • +p\, = l. An alternative derivation is given

by Goodman fl, p. 280].
We may suppose that the numbers 0„ are distinct. It is easily seen

that amp f(z) is constant on each of the arcs into which the points

ei0* divide the unit circle, and has a discontinuity of 27rft at e'V Thus

f(z) maps the unit circle onto the w-plane with n radial slits, the

angles between the slits being 2tt/3». The length of the slits is governed

by the distribution of the points e<9»; when consecutive points are

close together, the intermediate arc must go into a slit whose end is

far from the origin.

Theorem 5. Among the normalized functions f(z) which map the unit

circle conformally onto star-shaped regions, the maximum of

dt^Blogf'(z) + ClogJ-jj,

where B and C are complex numbers (not both zero), at any point Zo with

0 < I Zo | < 1, is attained for a function which maps the unit circle onto

the w-plane with at most two radial slits. Every extremal function must

be of this type.

Remark. Notice that /'(z)=l+ • • • and /(z)/z = l+ • • • are

both different from zero throughout the unit circle, so that log/'(z)

and log [/(z)/z] have no singularities there; in each case, a single-

valued function which is regular in the unit circle is determined by

choosing the branch which vanishes at the origin.

Proof. Consider first the above functions which map the unit circle

onto the w-plane with a finite number of radial slits. We shall reduce

the present extremal problem to the maximum problem studied in

§§1-2. If |z0| =r, then the transformation r = 1/(1 —zat) maps |r| =1

onto the circle having 1/(1 +r) and 1/(1— r) as ends of a diameter;

that is, onto the circle
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1        _       r

1 - r2     ' 1 - r2 '

Thus if we put

1 _ 1 + rzv

1 - Zoe~ie* ~~  1 - *2'

we shall have |z»| =1. Making this substitution, we find that

M.n( * r—L-fT(i+wj»,
z0 t-Al-zoe-'W (l-r2)2,.i

and

so/fro) _ 1 + 2 V     ^Z°€~i9y 2E ^ 1

/(zo) .=i 1 - zoe~ie" „_i 1 - zoe-™"

1 + r2 2r       » 1 + r2 / • \
= --- + --"Eft**-"(I + s£ft*»),

1 — r2       1 — rl ,=i 1 — r2 \ „_i       /

where s = 2r/(l+r2). Hence

f(zo)                zof'(zo)                            f(zo)
B log/'(so) + C log^^ = B log-—- + (B + C) log-

Zo f(Zo) Zo

1 1 + r2
= H + Alog---+51og---,

1 — r2 1 — r2

where A= 2(B + C) and

H = A E ft log (1 + rz,) + 5 log ( 1 + j £ ft^Y
v-l \ v=l /

Hence the problem under consideration reduces to maximizing dtH.

Since the points z, are arbitrary points on \z\ —1, the desired result

follows from §2.

It remains to consider star mappings in general. The previous ex-

tremal functions still furnish a maximum. Also, there cannot be any

additional extremal functions. For the quantity H above cannot be

near its maximum unless all the weights ft are small except when z,

is near one or the other of two points on |z| =1. Thus any extremal

function can be approximated by a function which maps |z| <1 onto

the w-plane with a finite number of slits, all of which (in view of the

remarks preceding Theorem 5) are either near to one or the other of

two rays, or else start far from the origin. Hence the extremal function

must be of the stated type.
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Remark. Stroganoff [5] proved the above theorem in the special

case B = +i, C = 0, and indeed by deriving (though by a different

method) conditions equivalent to ours, suitably specialized. He was

able to show that, in the case considered, only one slit was actually

required; thus the maximum and minimum values of amp f'(z) for

normalized star mappings are attained by functions of the form

f(z) =z/(l —ze~i6)2. We shall not prove this result, but we do give in

§4 certain other cases where we must have just one slit, and in §5

an instance where two slits are required.

4. Some cases with one slit. According to Theorem 5, the maxi-

mum value of dt{B log/'(z) + C log [f(2)/z]} f°r normalized star

mappings is attained by a function which maps the unit circle onto

the w-plane with at most two radial slits. If B=0, using a result

noticed in §2, it is seen that only one slit is required; compare Marx

[3, Satz B]. If B ?^0, we may, without loss of generality, suppose that

B=e~ia and C=\e~ia. A partial solution to the problem whether one

slit is sufficient in this case is given by the following theorem.

Theorem 6. Among the normalized functions f(z) which map the unit

circle onto star-shaped regions, the maximum of

5K{e--[log/'(z)+Xlog(/(z)A)]}

at a point zo with |zo| =r, where 0<r<l, can be attained only for a

function which maps the unit circle onto the w-plane with one radial slit,

provided that

| amp (1 + X) |   +3 arc sin r + 2 arc tan r g x.

Proof. By the same procedure as in the proof of Theorem 5, we

can reduce this to a result proved in §2. With the notation previously

used, A/B =2(l+\). Since s = 2r/(l+r2), we see that

arc sin 5 = 2 arc tan r.

It remains only to apply the result at the end of §2.

Remark. Thus the conclusion of the theorem holds at least for

small values of r, unless Xg —1. For X= —1, it is easily seen that the

conclusion actually holds for all values of r. If X> — 1, the condition

of the theorem reduces to 3 arc sin r + 2 arc tan rg7r; hence the con-

clusion holds in this case at least for rg0.62. On the other hand, for

X= —2, the result does not hold even for small values of r; compare

§5.

Theorem 7. For the class of normalized functions f(z) which map

the unit circle onto star-shaped regions, the set of possible values of
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log/'(z) at a point zo with \zo\ =r is exactly the map of |z| jSr by the

function h(z) =log [(l+z)/(l — z)3], at least if r^0.6.

Proof. We show first that h(z) maps |z| ^r onto a convex set.

Since

1 3
h'(z) =-+-,

1 + z      1 -z

we see that (Sth'(z) >0, so that h(z) is univalent. We find that

zh"(z)        2(1 + z + s2)  _ 2(1 - z8)

1+   h'(z)    ' (1 - z2)(2 + z) ~ (1 - z)(l - z2)(2 + z) '

Hence

I        /       zh"(z)\\ r
amp I 1 -\-]   gS arc sin r + arc sin r2 + arc sin r3 + arc sin —.

I     *\ h'(z) )\ 2

The right side is less than 7r/2 for r^0.6, which shows that the map

of |z| gr by h(z) is convex.

It is easily seen that the set of possible values of log/'(z) at a point

Zo on |z| =r includes the map of |z| gjr by h(z); we need consider

only functions of the form f(z) =z/(l— kz)2 with \k\ Sal. We have

just shown that this map is a convex set. Now by Theorem 6, with

X = 0, the maximum of D^e-'0' log f'(z0)] is attained for f(z)

= z/(l — ze~i$)2 for some real d, and hence is equal to the maximum of

dt[e~iah(z)] on |z| =r. Hence the possible values of log f'(zo) lie in

the map of |z| ^r by h(z).

Remark. Using the notation of [4], the hypothesis that/(z) is a

star mapping may be written

zf'(z) 1+z .    .
"77V   "<   i- for    z     <1,
f(z) 1 - z

and the conclusion of Theorem 7 is

1 +z
log f'(z) < log- for    z    g 0.6.

J (1-z)3 '   '

This conclusion may also be written

K'^TT^T* for 'zl =0A
(1 - z)3

It was conjectured by Marx [3, p. 66], that Theorem 7 holds in
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the entire unit circle. This was proved by Marx for rg2 —31/2

= 0.267 • • • ; in [4, §3.8], the bound was increased to (5 —lT1'2)^

= 0.438 • • • . The present result is a further improvement.

If the conjecture of Marx is correct, then Theorem 6, with X = 0,

will also hold for all r. It should be noted that for a = 0 or x, this fol-

lows from classical results on univalent functions. Also, for a= +x/2,

it was proved by Stroganoff [5] and Goodman [l ], but their methods

do not seem to be applicable to other values of a.

The bounds given for r in Theorems 6 and 7 could be improved by

making more careful estimates. However, we cannot prove Theorem 6

with X = 0 for the whole unit circle on the basis of Corollary 3, since

(as is easily seen) the required mappings are not all convex. Equally,

this result cannot follow from Corollary 1. Also, admitting Theorem 6

with X = 0 for all r, we still could not deduce Theorem 7 for the whole

unit circle, since the function h(z) used there is also not convex for

\z\ <1. Thus a new method is required to make a complete proof of

the conjecture of Marx.

5. Some cases with two slits. It is known that, for the class ot

functions/(z) =z+ • • • which are regular and univalent for \z\ <1,

we have

z2f'(z) 1 .    ,
1 — r2 <   —-—   <-■— for    z   = r.

~    [f(z)}2   ~ 1 - r2

(This result is equivalent to finding bounds for the derivative of a

function univalent in the exterior of the unit circle and normalized at

oo ; see Lowner [2, Satz IV and Satz V].) The lower bound is attained

at z = r for a function which maps \z\ <1 onto the w-plane with

slits at either or both ends of the real axis. The extremal functions for

the narrower class of star mappings are the same. This shows that

Theorem 6 does not hold for X= — 2 and a=x, even for small values

of r: the extremal functions do not necessarily map onto the plane

with just one slit.

The upper bound in the above inequality is also attained for a func-

tion which maps the unit circle onto the w-plane slit along one or

both ends of a straight line; but in this case, the line does not pass

through the origin, so that the extremal functions do not furnish star

mappings. The upper bound for the class of star mappings is conse-

quently smaller. Although we shall not calculate this maximum, we

shall show that it can be attained only for a function which maps the

unit circle onto the w-plane with exactly two radial slits. Hence in

Theorem 6, for X= — 2 and a = 0, we must have two slits, even for
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small values of r. Thus there are cases where we must have one slit,

cases where we must have two slits, and cases where both alternatives

are possible.

Theorem 8. The maximum value of \z2f'(z)/[f(z)\2\ at a point

zo9*0 in the unit circle, for the class of normalized star mappings, can

be attained only for a function which maps the unit circle onto the w-

plane with exactly two radial slits.

Proof. It will be sufficient, in view of Theorem 5, to show that the

maximum cannot be attained if the map has just one radial slit.

When the map has just one radial slit, we have

z z2f'(z)
f(z) =-1    hence    r    \   = 1 - z2r!i',

(l_2<r«)2 [/(,)]«

It follows that, in this case,

22/'(z) |
1 - r2 g    /    _    g 1 + r2 for    z    = r.

[/(z)]2 '    '

At z = r, the minimum is furnished for 0 = 0 or tt, in agreement with

results mentioned above, and the maximum is furnished for 9= ±ir/2.

We are to show that the latter case does not furnish the maximum for

the whole class of star mappings. For this purpose, we shall transform

the problem to the form considered in §1, and show that the condition

of Theorem 3 is not satisfied.

The given problem is to maximize

9t{log/'(z)-2 1og|/(z)/z]}.

We may, without loss of generality, restrict our attention to the point

z = r, where 0<r<l. As in the proof of Theorem 5, this problem is

reduced to maximizing dtH, where

H = - 2 E ft log (1+ rz,) + log ( 1 + 5 E ftA
»=1 \ r-l /

where s = 2r/(l-f-r2), the points z, are to satisfy |z„| =1, and the

weights ft are subject to the usual conditions.

We are to show that ?RH is not maximized for n = 1. Recalling how

the points z„ were introduced in the proof of Theorem 5, we see that

the maximum possible value of dtH for n = 1 is attained for Zi satisfy-

ing

1 l+r»i

1 - ri      1-r2'
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that is, for
- 2r+(l -r2)i

Zi = - •
1 + r2

We can check that the condition of Theorem 1 is satisfied, if we also

substitute the same value for f; we must put <j>(z) = —2 log (1+rz)

and \p(z)=\og (1+sz). On the other hand, we shall show that the

condition of Theorem 3 is not satisfied.

If the maximum value of dtH is attained when n = 1, we may take

- 2r+ (1 - r2)i

1 + r2

According to Theorem 3, the maximum of

P(z) = M (~ 2 log (1 + rz) + —^—)
\ 1 + sU

on |z| =1 should be attained at z = f. Now for \z\ = 1, we have

| 1 + rz |2 = (1 + rz)(l + rz) = 1 + r2 + 2rx,

where z = x+iy. Also, a simple calculation shows that

s 2r 4r2i

1 + tf ~  1 + r2       1 - r*

It is thus clearly sufficient to consider the case y^O, so that

z = x+i(l-x2)112. Putting P(z)=p(x), we find that

2r* 4r2(l - x2)1'2
P(x) = ——- +-log (1 + r2 + 2rx),

1 + r2 1 — r4

hence

Ar2x   / 1 1 \
p'(x) =-(-).

1+r2 \l + r2 + 2rx     (1 - r2)(l - x2)1'2/

Now the second factor on the right is never positive; indeed

(1 + r2 + 2rx)2 -  [(1 - r2)(l - x2)1'2]2 =  [2r + (1 + r2)*]2.

This shows that p'(x) >0 for x<0, and p'(x) <0 for x>0, except that

p'(x) =0 not only for x = 0, but also for x= — 2r/(l+r2). The latter

point, which corresponds to z = f, does not, however, furnish a maxi-

mum. On the contrary, the maximum of P(z) for \z\ gl occurs only

at z = i. Thus the condition of Theorem 3 is not satisfied, so that dtH

is not maximized for » = 1.
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CRITERIA OF BOTJNDEDNESS OF THE SOLUTIONS OF
NONLINEAR DIFFERENTIAL EQUATIONS

CHOY-TAK TAAM

1. In this paper we shall use the following lemma to derive some

criteria of boundedness of the solutions of certain nonlinear differen-

tial equations.

Lemma. Suppose that the following conditions are satisfied:

1. u(x) and v(x) are real-valued functions, defined and non-negative

for x^a,

2. v(x} and u(x)v(x) belong to L(a, R) for every R>a,

3. for some positive constant M

(1.1) u(x) g M+  f   u(t)v(t)dt (x ^ a).

Then

(1.2) u(x) g M exp ( f   v(f)dtj (x ^ a).

This lemma is useful in the study of boundedness and asymptotic

behavior of the solutions of differential equations, see for instance

[l; 2; 3]. Its proof is simple: divide the left-hand member of (1.1) by

its right-hand member and multiply the result by v(x), then integrate
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