THE BERNSTEIN APPROXIMATION PROBLEM!
HARRY POLLARD

Let k(x) be a complex-valued function continuous on the interval
(— =, =), and satisfying the condition

@) lim x"k(x) = 0, x—>to,n=01,---.

The Bernstein problem calls for necessary and sufficient conditions
in order that the set of functions x"k(x), n=0, 1, - - - , form a funda-
mental set? in the linear space C, of functions continuous on (— ,
©), vanishing at + «, and normed by the maximum.

A few simple observations help to reduce this formulation of the
problem to a more accessible form. First, if x*k(x) is fundamental,
then k(x) can have no zeros. For each element in the closure of the
finite linear combinations of {x"k(x)} must inherit any zero of k(x).
Secondly x"k(x), n=0, 1, - - -, can be fundamental if and only if
x"[ k(x)| is also fundamental. This is true because a function f(x) in
C, is approximable by linear combinations of the x"k(x) if and only
if the continuous function® f(x) sgn k(x) is approximable by the same
linear combinations of x"lk(x)[. Consequently it may be assumed
that k(x) =1/®(x), where

(ii) liman/d(x) =0, x— +ow,n=01,---;
(iii) ®(x) > 0, — o < x< w,

Finally, in view of (iii) we may restrict ourselves to real space C,.

For functions ®(x) which in addition to (ii) and (iii) have the
properties that ®(x) =®(—x) and that $(x) is increasing for x>0,
necessary and sufficient conditions have been found by Bernstein [3 ]
and by Ahiezer and Bernstein [2]. An independent solution of the
same nature as these was found by the author [5], but without the
additional restrictions on ®.
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! This research was begun under the sponsorship of the Office of Ordnance Re-
scarch, U. S. Army, under Contract No. DA-30-115-ORD-439 and completed under
Contract No. AF 18(600)-685 with the Air Research and Development Command.
I wish also to acknowledge my indebtedness to Professors Arne Beurling and W. H. J.
Fuchs for discussions of my paper [5] which led to the simplifications of the present
one.

2 Following Banach, Théorie des opérations linéaires, p. 58, I call a set S in a
Banach space B fundamental if the set of finite linear combinations of the elements of
S is dense in B. By now the words “closed” and “complete” as well as their French
or German equivalents have become thoroughly confused.

3 Continuous because k(x) 0.
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The purpose of this paper is to present a criterion simpler than any
of these, and which requires only the original restrictions (ii) and (iii)
on ®. In §4 it will be shown how this result can be converted into a
solution of the corresponding problem for the interval (0, «). In §5
the solution will be extended to the spaces L?(— o, »), p=1.

The main result to be proved is this:

THEOREM 1. In order that the set of functions x*/P(x), n=0,1, - - -,
subject to conditions (ii) and (iii) be fundamental in C, it is necessary
and sufficient that*

log*
o - f g [+@)] o
14 «2
where the upper bound is taken over all real polynomials p for which
|p(x)| <P(x), — 0 <x< o,

1. The necessity. To prove the necessity we begin by borrowing a
lemma of Ahiezer and Babenko [1]. It is reproduced here because their
paper is not readily available, and in a revised form useful in treating
the L? problem (§5).

LeEMMA 1.1. Let a(x) be a function measurable on (— «, «©), such

that a(x) >0 a. e. and such that x"a(x) EL(— ©, ©), n=0,1, - - . If
1

w1 [Aese®] 4, <,
1+ a2

then there exists a real function b(x) #0, bounded and belonging to L? for
every p 21 such that

(1.2) f 2"a(x)b(x) dx = 0, n=201,--
Since a(x) belongs to L and (1.1) is assumed to hold, a theorem of

Hille and Tamarkin [4] guarantees the existence of a (complex-
valued) function G(x) such that |G(x)| =a(x) and

f e~=G(x)dx = 0, u < 0.
Since also
f o O 0 <0
et — , u R
(1 — ix)?

the convolution theorem yields

4 Limits will be omitted from doubly infinite integrals. logt x is defined here as
max (0, log x).
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(1.3) fe’""‘“ﬂ—dx=0, u < 0.

Now x"G(x) =x”|a(x)| is in L for each n, by hypothesis. Conse-
quently we may differentiate under the integral (1.3) and obtain
from the continuity at # =0 that

G(x)
fxn - _dx =0, n=0,1,--
(1 —ix)?
This may be written as
sgn G
fxna(x)__gn.___'(_x.)_dx=0, n=0,1,..,
(1 — ix)?
(1.2) is now established, with
sgn G(x
b(x) = real part of g—() .
(1 — ix)?
To prove the necessity of condition (1) suppose that x"/®(x),
n=0,1, - - -, is fundamental in Cy, and that
log* x
(1.4) u.b.f—gl—P()—l— iz < @
14 «2

for all polynomials p such that |p(x)l <®(x). We shall obtain a
contradiction from these assumptions.

Letc,=1—1/n.Foreachn>1 the function ¢,/(14x2) belongs to C,.
Consequently for each n there exists a finite linear combination
Pa(x)/®(x) of the functions x*/®(x) such that

Pn(x) Cn 1

P(x) 14 «? n
Clearly | p,.(x)l <®(x). Moreover

. o(x)
lim Pn(x) = 1 + x2 )

From this, (1.4), and Fatou’s lemma it follows that
f log* | #(x) |
14 «?

Because x?/®(x) =0(1), x— + =, the function 1/®(x) EL. Therefore
(1.5) is equivalent to

(1.5) dx <
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f | log &(=)|

14 22

By Lemma 1.1 with a(x) =1/®(x) there exists a function b(x) #0 in
L such that

f ) b(x)dx = 0.

In other words, there is a linear functional on C, which vanishes for
each element x*/®(x) but is not identically zero. This contradicts
the hypothesis that x*/®(x), =0, 1, - - -, is fundamental.

2. Lemmas. The following lemmas are probably familiar to work-
ers in the field, but do not seem to be recorded.

LEMMA 2.1. There exist absolute constants K, L, and yo such that if

(2.1) H() =fd”(“), s=x+iyy>0,

2 — U
and o is a real function of bounded variation, then®

f iH( + 1)’) |1/z

(2.2) dz < K{V(e) + QV(e)"2+ L},0 < y < yo.

First suppose that ¢ is increasing. Then an argument of Titch-
marsh [7, pp. 144-145] shows that (2.2) holds without the factor 2
in the second term on the right-hand side. In the general case write
o =01—0; where g, and ¢, are increasing and V(o) = V(a1) + V(02).
Apply the preceding remark to each part separately and add. (2.2)
now follows with the factor 2 in the second term.

LeEMMA 2.2. If H(2) is defined as in the preceding lemma and V(e) =1,
then

. .
2.3) f log* | H(z + iy) |
1+ 22

where A and y, are absolute constants.

dx < A, 0<y= v

Since log* x<x'? this follows from the preceding lemma with
A=K(1+2Y24L).

LeEMMA 2.3. If H(3) is defined by (2.1) where o is real and not sub-
stantially a constant, then for some constant C independent of y and some
>0

§ V(o) denotes the total variation of o.
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og | 266 + 9|
x
14 x?

Note that there is no claim that C and y, are absolute constants.
It follows from the hypotheses that H(z) does not vanish identically
for y>0. For if it did it would also vanish for y <0 by conjugacy,
and then ¢ would be substantially a constant, by Stieltjes’ inversion
of (2.1).

Since |log x| =2 logt x—log x, (2.4) follows from (2.3) and the
following lemma.

(2.4)

<C, 0<y=n.

LEMMA 2.4. Let H(z) be a function analytic for y >0, bounded in each
half-plane y=1>0, and let it not vanish identically. Then for some con-
stants M and y.»

(2.5)

flog|H(x+iy)|dx>M>_°0 0<y<y

14+ 22
Cask (i). H(s) #£0. For each >0 define
hy(w) = H(z + in),

where z=1(1 —w)/(1+w), w=re®, maps the half-plane y =0 onto the
disk le =<1. Let the disks C; and C, be respectively the images of the
regions y=0, y= —n/2. Then C,DC;, the boundaries of C; and C.
being tangent at w= —1. Since H(z-%n)is bounded and analytic for
y= —n/2 it follows that k,(w) is analytic in C; except possibly at
w= —1, is bounded on C;, and vanishes on at most a countable set on
the boundary of Ci, i.e. |w| =1.

Now £,(0) =H(i(1+7)). Since H(z) #0 it follows that for suffi-
ciently small choice of 7, say 0 <75 =17, we have lh,,l (0)=6>0. By
Jensen’s theorem [6, p. 125]

2%
f log | hy(re®) | d8 > 2z log | hy(0) |> 2 log 5,
0

provided 0=<r<1, 0 <n=n,. Since k, is bounded in C, for each n and
since

lim log I hy(re®) | = log | h,,(e“’)l
—1

holds except on at most a countable set, it follows from Fatou’s
lemma that
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2x
f log I h,(e%) | dd = 2x log 8, 0< 9= 7.
0

Since
dg = 2(1 4 x*)~ldx,

(2.5) follows from this on mapping back into the z-plane, with y, =7,
and M =27 log é.

Casek (ii). If H(z) =0 then for some choice of the integer p the func-
tion Hy(z) =(2—1)~?H(2) does not vanish at 7 and fulfills the condi-
tions of Case (i). (2.5) then holds for Hi(z), and then for H(z) on
readjustment of the constants.

3. The sufficiency of condition (1). If x*/®(x), =0, 1, -.-, is
not fundamental then there exists a real function of bounded varia-
tion on (— o, «), not substantially a constant, such that

u‘n
3.1 f d =0, =0,1,---
3.1 o00) a(u) n
It may be assumed that V(g) =1. Define
1 do(u)
(3.2) HG) = f .
d(u) z—u
From the identity
1 1 u un! u"
=t — 4 F
z2—u 3z 3 z" 2z — u)

and (3.1) it follows that for each integer »n

» 1 d
PHG) = [ — i
z* B(u) z—u

so that for each polynomial p

p(u) do .
®(u) z—u

p()H(z) =

Consider the polynomials for which | p| <®. Then the total variation
of [%.(p(v)/®(v))do is at most that of o. This enables us to invoke
Lemma 2.3 with H(2) replaced by p(2)H(z) and conclude that

f log* | p(x + iy)H(x + iy) |

3.3
3.3) T

dx <A, 0<y =y
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This and (2.4) (with H defined by (3.2)) enable us to obtain
f log* |p(x + i) |
14 a2
whence by Fatou’s lemma
f log+ | p(x) |
14 a2

Since 4 +C is independent of p this contradicts hypothesis (1) and
completes the proof.

dx < A +C, 0 < y = min (yo, y1),

dx < A+C.

4. The semi-infinite interval. Suppose that ® is a continuous func-
tion defined for x =0 and satisfying the conditions

@) ®(x) > 0, 0= x< o;

(ii) lim x*/®(x) = 0, =0,1,.--.
z— o

We ask when the set of functions x*/®(x), =0, 1, - - -, is funda-

mental in the space Cf of functions continuous for x =0, vanishing
at o, and normed by the maximum. The answer can be deduced
immediately from Theorem 1 and the following one.

THEOREM 2. The set of functions x*/®(x), n=0, 1, - - -, is funda-
mental in C& if and only if the set x*/P(x?), n=0, 1, - - -, is funda-
mental in C,.

First suppose that x*/®(x?) is fundamental in C,. Let ¢ belong to
CS and let € be an arbitrary positive number. By hypothesis there
exists a polynomial p such that

p(x) €
q)(xz)—qb(xz) <—2-» — o < x< o,
Replace x by —x and add the two inequalities. This leads to
M_¢(x2) <€, — 0 < x< o,
®(x?)
Now p(x)+p(—x) is an even polynomial, say g(x?). Then
%%—¢(x) < 0SS 2< =,

The converse is less trivial. Suppose that x"/®(x) is fundamental
n CF. The problem is to show that the equations
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xﬂ
.1) f 2 @) =0, n=01,---,
have only the trivial solution ¢. There is no harm in supposing that
¢ is normalized: ¢(0) =0, o(x) = [c(x+) +a(x—)]/2.
First let #=2m and make the change of variable x2=¢{ in (4.1).

Then

wid[a(g-lﬂ) - U(_fm)] = Ov m = 07 1; e

o ()
Since {™/®(¢) is fundamental it follows that o ({1/2) —a(—{V2) is sub-
stantially a constant. By the normalization the constant must be
zero, so that ¢ is even.

On the other hand, if n=2m+1, m=0, 1, - - -, the equations
(4.1) become (since o is even)
© x2m+l
f da(x)=0, m=0'l,.-.
o B(x?)

Let x2={ once again and this in turn becomes

[7 o rma@m=o.
0

o(5)
Hence
[ smastey = o, £20,
0
or
v
f udo(u) = 0, y = 0.
0

Integrate by parts to obtain

yo(y) = f ”a(u)du,

so that o(y) is constant for y20. Being even it is constant for — ®
<y< o,

5. The problem for LP(— », «). Suppose p=1 and let x"k(x)
€L?(— o, ©), =0, 1, - -. The problem now is to determine
when x"k(x), n=0, 1, - - -, is fundamental in L?. By the arguments
used in the introduction we may suppose that k(x) =1/®(x), where
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() ®(x) > 0 almost everywhere in (— «, »);
(ii) xn/®(x) € L», n=0,1,---,
and confine our attention to real L? space.

THEOREM 3. In order that the set of functions x*/®(x), n=0,1, - - -,
subject to conditions (1) and (ii) be fundamental in L? it is necessary and
sufficient that (1) hold, where the upper bound is taken over all real poly-
nomials p such that ||p/®| <1.

The norm is of course

Al = (f | /(=) |de)1/p,

Suppose that x"/®(x) is fundamental. Let k=|(1 +x’~’)“1” and
¢n=(1/2k)(1 —1/n). For each = there exists a polynomial p, such that

pn() Cn 1
®(x) a 1+ x? ;
Then
Ppa(%) 1 1 1 1
' ) < . + el | (1 + 22)7Y| = ;"l‘ﬁ(l - ";) k
1 1
=7<1—;><1, n=12--
Furthermore
Da(x) Cn
e | ®(x) 1+ 22

so that for a subsequence of the p,, which we continue to denote by p.,,

. ta(x) 1 1
lim —
n— o ‘I’(x) 2k 1 + x?

a.e.

Hence if (1) is false we have, by Fatou's lemma, that (1.5) holds.
Because of condition (ii), x*/®(x) &L for each n. Therefore, by
Lemma 1.1 with a(x) =1/®(x) there exist a function b(x) in every
L9, in particular in L?’ such that

f d b(x)dx = 0, n=01---
— P(x)
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This contradicts the assumption that x*/®(x) is fundamental, so that
(1) cannot be false.

As for the sufficiency, suppose (1) holds over the prescribed range
of polynomials. If x*/®(x) is not fundamental there exists a function
¢(x) in L?’ such that ¢#0 and

uﬂ
dx =0, =0,1,2,---.
f a(a) 2% "

We may suppose

( f | #(=) Ip’dx)”"’ <1
Now define

d
HG) = o(w) du
d(u) z—u

As in §3 we may conclude that

p(u) ¢(u)du .
d(u) z—u

p(2)H(z) =

Suppose that we restrict ourselves to polynomials p such that
|lp/®|| <1. Then the total variation of

o)
o(u) = f_m Tv)qs(v)dv

is at most 1, by Hélder’s inequality. Consequently by Lemma 2.2
once again the inequality (3.3) is valid. The rest of the proof proceeds
as in §3.

I have not found an analogue for Theorem 2 of sufficient simplicity
to record here.
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