
THE BERNSTEIN APPROXIMATION PROBLEM1

HARRY POLLARD

Let k(x) be a complex-valued function continuous on the interval

(— co, co), and satisfying the condition

(i) lim xnk(x) = 0, x —» + », « = 0, 1, • • • .

The Bernstein problem calls for necessary and sufficient conditions

in order that the set of functions x"k(x), n=0, 1, ■ • • , form a funda-

mental set2 in the linear space Co of functions continuous on (— «,

oo), vanishing at + oo, and normed by the maximum.

A few simple observations help to reduce this formulation of the

problem to a more accessible form. First, if xnk(x) is fundamental,

then k(x) can have no zeros. For each element in the closure of the

finite linear combinations of [xnk(x)} must inherit any zero of k(x).

Secondly xnk(x), n=0, 1, ■ • • , can be fundamental if and only if

x"|&(x)| is also fundamental. This is true because a function/(x) in

Co is approximable by linear combinations of the xnk(x) if and only

if the continuous function3 f(x) sgn k(x) is approximable by the same

linear combinations of x"|&(x)|. Consequently it may be assumed

that k(x) =l/d>(x), where

(ii) lim"x"/4'(x) =0,    x —> ± °o, n = 0, 1, • • • ;

(iii) 4>(x) >0, — oo < x < oo.

Finally, in view of (iii) we may restrict ourselves to real space Co-

For functions $(x) which in addition to (ii) and (iii) have the

properties that 4>(x)=$(—x) and that $(x) is increasing for x>0,

necessary and sufficient conditions have been found by Bernstein [3]

and by Ahiezer and Bernstein [2]. An independent solution of the

same nature as these was found by the author [5], but without the

additional restrictions on <I>.
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I wish also to acknowledge my indebtedness to Professors Arne Beurling and W. H. J.

Fuchs for discussions of my paper [5] which led to the simplifications of the present

one.

2 Following Banach, Thiorie des operations liniaires, p. 58, I call a set 5 in a

Banach space B fundamental if the set of finite linear combinations of the elements of

S is dense in B. By now the words "closed" and "complete" as well as their French

or German equivalents have become thoroughly confused.

3 Continuous because k(x) ^0.
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The purpose of this paper is to present a criterion simpler than any

of these, and which requires only the original restrictions (ii) and (iii)

on <E>. In §4 it will be shown how this result can be converted into a

solution of the corresponding problem for the interval (0, oo). In §5

the solution will be extended to the spaces Lp(— «>, <*>), p^l.

The main result to be proved is this:

Theorem 1. 7n order that the set of functions xn/<b(x), n =0, 1, • • • ,

subject to conditions (ii) and (iii) be fundamental in Co it is necessary

and sufficient that*

(1) u. b.   I -——-dx=co,
J 1 + x2

where the upper bound is taken over all real polynomials p for which

\p(x)\ <<i>(x), — =o <x< oo.

1. The necessity. To prove the necessity we begin by borrowing a

lemma of Ahiezer and Babenko [l ]. It is reproduced here because their

paper is not readily available, and in a revised form useful in treating

the Lv problem (§5).

Lemma 1.1. Let a(x) be a function measurable on (— », oo), such

thata(x) >0 a. e. and such that x"a(x)EL(— «>, co), «=0, 1, ■ • • . If

(i.D J-T+^*<00'

then there exists a real function b(x) ^0, bounded and belonging to Lpfor

every p^l such that

(1.2) f x"a(x)b(x) dx = 0, n = 0, 1, • • • .

Since a(x) belongs to L and (1.1) is assumed to hold, a theorem of

Hille and Tamarkin [4] guarantees the existence of a (complex-

valued) function G(x) such that |G(x)| =o(x) and

I  erixuG(x)dx = 0, m < 0.

Since also

/dx g-izu - =  0 M < 0,

(1 - ix)2

the convolution theorem yields

* Limits will be omitted from doubly infinite integrals. log+ x is defined here as

max (0, log x).
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r g(x)
(1.3) I   e-™"-dx = 0, u < 0.

J (1 — ix)2

Now xnC7(x) =xn|a(x)| is in L for each n, by hypothesis. Conse-

quently we may differentiate under the integral (1.3) and obtain

from the continuity at w=0 that

r      g(x)
I   x"-dx = 0, n = 0, 1, • • • .

J      (l - ix)2

This may be written as

/sgn G(x)x"a(x)-■ dx = 0, n = 0, 1, • • •
(1 - ix)2

(1.2) is now established, with

sgn G(x)
b(x) = real part of-•

(1 - ix)2

To prove the necessity of condition (1) suppose that xn/$(x),

n = 0, 1, • • • , is fundamental in Co, and that

n n k   f log+ I pix) 1   *   s
(1.4) u.b. I -dx < oo

J 1 + x2

for all polynomials p such that  | p(x) | <$(x). We shall obtain a

contradiction from these assumptions.

Let cn = 1 — 1/n. For each n > 1 the function cn/(l +x2) belongs to Co.

Consequently for each n there exists a finite linear combination

pn(x)/$(x) of the functions x"/$(x) such that

pn(x) cn 1

3>(x)       1 + x2        n

Clearly |p„(x)| <<p(x). Moreover

*(*)
lim pn(x) = ——- •
B-» 1    +   X2

From this, (1.4), and Fatou's lemma it follows that

n o r log+|$(x)|
(1.5) I -dx < oo.

J 1 + X2

Because x2/4>(x) =0(1), x—>+ <», the function l/$(x)G7. Therefore

(1.5) is equivalent to
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/I log 4>(x) |-dx < oo.
1 + Xs

By Lemma 1.1 with c(x) =l/$(x) there exists a function 6(x)^0 in

L such that

/xn -b(x) dx = 0.

In other words, there is a linear functional on C0 which vanishes for

each element xn/<b(x) but is not identically zero. This contradicts

the hypothesis that xn/$(x), n=0, 1, • • ■ , is fundamental.

2. Lemmas. The following lemmas are probably familiar to work-

ers in the field, but do not seem to be recorded.

Lemma 2.1. There exist absolute constants K, L, and y0 such that if

/do-(u)-, z=x+iy, y>0,
z — u

and <t is a real function of bounded variation, then6

r\H(x+ iy) |1/2 ,
(2.2)    I   ' ,  '     dx<K{V(o-) + (2V(o-)yi2 + L ,0<ygy„.

J 1 + x2

First suppose that a is increasing. Then an argument of Titch-

marsh [7, pp. 144-145] shows that (2.2) holds without the factor 2

in the second term on the right-hand side. In the general case write

er=<ri — a2 where <ri and o2 are increasing and V(o) = V(o-i) + V(a2).

Apply the preceding remark to each part separately and add. (2.2)

now follows with the factor 2 in the second term.

Lemma 2.2. If H(z) is defined as in the preceding lemma and V(<r) g 1,

then

/log+ I H(x + iy) I
' •"'   dx<A, 0<y^yo,
1 + x2

where A and y0 are absolute constants.

Since log+ x^x1'2 this follows from the preceding lemma with

A=K(l+2i'2+L).

Lemma 2.3. If H(z) is defined by (2.1) where <r is real and not sub-

stantially a constant, then for some constant C independent of y and some

yi>0

' V{a) denotes the total variation of a.
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nn r Vog\H(x^iy)\\
(2.4) I  -dx <C, 0 < y l£ yi.

J 1 + x2

Note that there is no claim that C and yi are absolute constants.

It follows from the hypotheses that 77(z) does not vanish identically

for y>0. For if it did it would also vanish for y<0 by conjugacy,

and then a would be substantially a constant, by Stieltjes' inversion

of (2.1).
Since [log x| =2 log+ x —log x, (2.4) follows from (2.3) and the

following lemma.

Lemma 2.4. Let H(z) be a function analytic for y>0, bounded in each

half-plane y^r}>0, and let it not vanish identically. Then for some con-

stants M and y2

/log    77(x + iy)———-tLLdx= M> - °o,      0 < y g, y2.
1 + x2

Case (i). 77(f) ^0. For each 77 > 0 define

h,(w) = 77(z + iv),

where z=i(l —w)/(l-\-w), w = rei0, maps the half-plane y =^0 onto the

disk \w\ 5= 1. Let the disks Ci and C2 be respectively the images of the

regions y^O, y=—w/2. Then C2Z)Ci, the boundaries of Ci and C2
being tangent at w— — 1. Since 77(z+irj)is bounded and analytic for

y^—n/2 it follows that hv(w) is analytic in Ci except possibly at

w = — 1, is bounded on Ci, and vanishes on at most a countable set on

the boundary of Ci, i.e. \w\ =1.
Now h1(0)=H(i(l+i])). Since 77(7) ^0 it follows that for suffi-

ciently small choice of n, say 0<?7^?7o, we have \hv\ (0) 2:S>0. By

Jensen's theorem [6, p. 125]

log I h„(rew) I dd > 2v log | A,(0) | > 2v log 5,
0

provided 0^r<l, 0<7]^tj0. Since hn is bounded in Ci for each 77 and

since

lim log I hv(re<°) |   = log | *,(>*) \
r->l

holds except on at most a countable set, it follows from Fatou's

lemma that
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/> 2i

log | hv(e») | dd ^ 2;r log 8, 0 < tj g r,0.
a

Since

dd = 2(1 + x2)~ldx,

(2.5) follows from this on mapping back into the z-plane, with y2 = nQ

and M = 2ir log 5.

Case (ii). If H(i) =0 then for some choice of the integer p the func-

tion Hi(z) = (z — i)~pH(z) does not vanish at i and fulfills the condi-

tions of Case (i). (2.5) then holds for Hi(z), and then for 77(z) on

readjustment of the constants.

3. The sufficiency of condition (1). If xn/$(x), n = 0, 1, • • • , is

not fundamental then there exists a real function of bounded varia-

tion on (— co, co), not substantially a constant, such that

(3.1) f-4-do-(u) = 0, « = 0, 1, •••.
J    4>(«)

It may be assumed that F(cr) s£l. Define

/l      da(u)

&(u)   z — u

From the identity

1 1m m"_1 un

-= —+ —+ ••• +-+ —-r
z — u      z       z2 z"       zn(z — u)

and (3.1) it follows that for each integer n

/«"       1      da(u)

z"    <p(m)   z — u

so that for each polynomial p

/p(u)      do-

4>(m)   z — u

Consider the polynomials for which | p \ <<!>. Then the total variation

of fLa(p(v)/<S>(v))da is at most that of a. This enables us to invoke

Lemma 2.3 with 77(z) replaced by p(z)H(z) and conclude that

f log+ 1 p(x + iy)H(x +iy)\
(3.3) I -dx < A,     0 < y 2= yo-

J 1 + x2
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This and (2.4) (with 77 defined by (3.2)) enable us to obtain

/log+ \p(x + iy) |-——-dx < A + C, 0 < y = min (y0, yi),
1 + x2

whence by Fatou's lemma

riog+|*(*)|

J 1 + X2

Since .4+C is independent of p this contradicts hypothesis (1) and

completes the proof.

4. The semi-infinite interval. Suppose that $ is a continuous func-

tion defined for x = 0 and satisfying the conditions

(i) $(x) > 0, 0 ^ x < oo;

(ii) lim xn/$(x) = 0, n = 0, 1, ■ ■ ■ .

We ask when the set of functions xn/$(x), n = 0, 1, • • • , is funda-

mental in the space Cq of functions continuous for x^O, vanishing

at oo, and normed by the maximum. The answer can be deduced

immediately from Theorem 1 and the following one.

Theorem 2. The set of functions xn/$(x), n=0, 1, • • • , is funda-

mental in Co if and only if the set xn/$(x2), n=0, 1, • • • , is funda-

mental in Co-

First suppose that xn/$(x2) is fundamental in C0. Let <p belong to

Cq" and let e be an arbitrary positive number. By hypothesis there

exists a polynomial p such that

p(x) e
-d>(x2)    < — > —   oo   < X <   oo.

4>(x2) 2

Replace x by — x and add the two inequalities. This leads to

p(x) + p(-x)
-<£(x2)    <«,        —  oo  < x <  oo.

<f(x2)

Now p(x)+P( — x) is an even polynomial, say <z(x2). Then

q(x)
4^--*(x)   <e, 0=X< oo.
*(x)

The converse is less trivial. Suppose that xn/$(x) is fundamental

n Co". The problem is to show that the equations



i955l THE BERNSTEIN APPROXIMATION PROBLEM 409

(4.1) f-^- do-(x) =0, n = 0, 1, ■■■,
J   4>(x2)

have only the trivial solution <r. There is no harm in supposing that

a is normalized: tr(0) =0, <r(x) = [<r(x + )-|-o-(x —)]/2.

First let n = 2m and make the change of variable x2 = f in (4.1).

Then

/> oo    >m

-f— ̂ kr1'2) - -K-r1'2)] = o,   • - o, i,....

Since fm/*(f) is fundamental it follows that <r(f1/2) — <r( — f1/2) is sub-

stantially a constant. By the normalization the constant must be

zero, so that a is even.

On the other hand, if n = 2m + l, m=0, 1, • • • , the equations

(4.1) become (since a is even)

/, oo    *.2m-f-l

—— d*(x) = 0, m = 0, 1, ....
o     *(x2)

Let x2 = f once again and this in turn becomes

/, oo     ym

-f— f''W)!=0.

Hence

f V'2<Mfl/2) = 0, x^0,
«/ o

or

/«**«•(«) = 0, y ^ 0.o

Integrate by parts to obtain

yo-(y) =  I    <r(u)du,
J 0

so that o(y) is constant for y^O. Being even it is constant for — oo

<y< oo.

5. The problem for L"(— oo, oo). Suppose p^l and let xnk(x)

ELp(— oo, oo), « = 0, 1, ■••. The problem now is to determine

when xnk(x), «=0, 1, • • • , is fundamental in Lp. By the arguments

used in the introduction we may suppose that k(x) =l/<P(x), where
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(i) $(x) > 0 almost everywhere in (— oo, oo);

(ii) x"/$(x) EL?, n = 0, 1, • • • ,

and confine our attention to real Lp space.

Theorem 3. 7» order that the set of functions xn/d>(x), n = 0, 1, • • • ,

subject to conditions (i) and (ii) be fundamental in Lv it is necessary and

sufficient that (1) hold, where the upper bound is taken over all real poly-

nomials p such that ||/>/3>|| <1.

The norm is of course

ii/ii = (/ \f(x)\HXyip.

Suppose that xn/$(x) is fundamental. Let ife = ||(l+x2)_1|| and

cn = (1/2&)(1 — 1/n). For each n there exists a polynomial pn such that

Pn(x) Cn 1

$(x)       1 + x2 n

Then

Prix) 1 ,, ,, 1 1    / 1\

-i(l-i)<., »-l,2,....

Furthermore

*n(x) c„
lrm-■—   = 0,
»—    $(x)        1 + x2

so that for a subsequence of the pn, which we continue to denote by pn,

K(x)       1        1
lim-=- a.e.
B-.« $(x)       2k 1 + x2

Hence if (1) is false we have, by Fatou's lemma, that (1.5) holds.

Because of condition (ii), xn/$(x)EL for each n. Therefore, by

Lemma 1.1 with a(x) =l/'i>(x) there exist a function b(x) in every

L", in particular in Lp' such that

-b(x)dx = 0, n = 0, 1, • • • .
-«,   Hx)
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This contradicts the assumption that xn/$(x) is fundamental, so that

(1) cannot be false.

As for the sufficiency, suppose (1) holds over the prescribed range

of polynomials. If xn/$(x) is not fundamental there exists a function

<b(x) in 7p' such that $f^0 and

/un -(p(x)dx = 0, n = 0, 1, 2, • • • .
4>(x)

We may suppose

( f \<t>(x)\*'dx\'»' ̂  1.

Now define

/4>(u)      du
^7T-<p(w)   z — u

As in §3 we may conclude that

/ n „/ n       C P^   <S>(u)du
p(z)H(z) =  I ——-

J    4>(w)    z — u

Suppose that we restrict ourselves to polynomials p such that

\\p/$\\ <1. Then the total variation of

/"    P(i>)
-<b(v)dv

.«,  Hv) VK

is at most 1, by Holder's inequality. Consequently by Lemma 2.2

once again the inequality (3.3) is valid. The rest of the proof proceeds

as in §3.

I have not found an analogue for Theorem 2 of sufficient simplicity

to record here.
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