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In this paper a study is made of continuous collections of decom-

posable continua on a spherical surface. Properties of the decomposi-

tion spaces of such collections filling up continua are established, and

a characterization of the decomposition spaces of such collections

filling up a spherical surface is obtained.

The results of the present paper are related to certain results ob-

tained by R. D. Anderson. He has shown [2] that there is a continu-

ous collection of nondegenerate continua filling up the plane which is

with respect to its elements homeomorphic to the plane, and that

there is a continuous collection of continua filling up a plane one-

dimensional continuous curve which is with respect to its elements

homeomorphic to the plane. On the other hand, he has obtained [l]

a characterization of the plane decomposition spaces of continuous

collections of nondegenerate continuous curves filling up a plane

continuum. Such decomposition spaces are special types of hereditary

continuous curves. The results of the present paper show that the

decomposition spaces of continuous collections of decomposable con-

tinua filling up compact plane continua are special types of hereditary

continuous curves, and consequently that even under this weaker

hypothesis such collections are dimension reducing if they fill up two-

dimensional continua and are dimension preserving if they fill up

one-dimensional continua. It might be noted that there do exist such

collections filling up one-dimensional continua, but that Theorem 2

of this paper gives a strong restriction about the nature of such col-

lections.

Theorems about continuous collections of continua in a compact

metric space can be stated equivalently in terms of monotone interior

transformations (p. 130 of reference [lO]).

It is understood throughout this paper that space is compact and

metric.

Definitions. If H is a point set and e is a positive number,

V(e, H) denotes the set of all points P such that some point of H

is at a distance from P of less than e. If H and K are point sets,

d(H, K) will be used to denote the greatest lower bound of the set

of all positive numbers e such that K intersects V(e, H). For two

Presented to the Society, April 24, 1954; received by the editors May 29, 1954.

351



352 ELDON DYER [June

such sets, S(H, K) is the greatest lower bound of the set of all posi-

tive numbers e such that K lies in V(e, H) and H lies in V(t, K).

If the capitalized letter R denotes a collection of closed point sets,

the corresponding capitalized German letter 9£ denotes the decom-

position space in which the points are the elements of R and if p and

q are points of Sft, the distance between p and q is S(p, q). R* denotes

the sum of all the elements of R.

The following lemma is well known and no argument is given for it

here:

Lemma 1. If R is a collection of closed and compact point sets in a

completely separable, metric space T, then fit is a completely separable,

metric space.

Definitions. Let G denote a continuous collection of mutually ex-

clusive continua.

If & is a subcontinuum of an element g of G and k is not a subset

of the closure of g — k, then m(k) denotes the least number such

that no point of k is at a distance more than that number from g — k.

If k is such a subcontinuum of an element g of G, e is a positive num-

ber which is not greater than m(k) and 2 is the set of all points of k

at a distance from g — k of not less than e, M(e, k) denotes the least

upper bound of the set of all numbers e such that there exist a point

P of 2 and sequences gi, g2, • ■ ■ , Oi, a2, • • • , bi, b2, • ■ • and

ei, e2, • • • such that, for each positive integer n, en is a positive num-

ber and a„ and b„ are points of the element g„ of G and each subcon-

tinuum of gn containing a„ and bn contains a point at a distance from

k of not less than en and the sequence gi, g2, • • ■ converges to g, the

sequences ai, a2, • • • and 61, b2, ■ • ■ converge to P and ci, e2, • • •

converges to e.

If e is a positive number and g is an element of G containing a

subcontinuum k for which m(k) is not less than e, let C(e, g) denote

the least upper bound of the set of all numbers M(e, k) for all such

subcontinua k of g. If, for each subcontinuum k of g, m(k) is less

than e, let C(e, g) be zero.

The function C(e, g) furnishes a measure of the lack of equicon-

tinuity of convergence of those sequences of elements of G which

converge to g. The following lemma is proved in the first paragraph

on p. 592 of reference [3]:

Lemma 2. If K is a continuous collection of mutually exclusive con-

tinua and $ is a compact metric continuum, there is a subcollection H

of K which is a dense inner limiting set in $ such that if h is an element

of H and e is a positive number, C(e, h) is zero.
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J. H. Roberts obtained [7] the special case of this lemma in which

all of the elements of the collection K are arcs.

Definitions. Throughout the remainder of this paper 5 will de-

note a spherical surface in three-dimensional Euclidean space and G

will denote a continuous collection of mutually exclusive decomposa-

ble continua filling up a continuum on 5. The metric used is the

ordinary distance between points. If C is a circle on 5 which is not a

great circle, the center of C is that point P of 5 which is equidistant

from all points of C and is at a distance from C of less than 21/2r,

where r is the radius of 5. The distance from P to C is the radius of C.

If P is a point of 5, / is a closed number interval of positive numbers

less than 21/2r, and e is a positive number which is not greater than

2r, then C(P, I, e) denotes the collection of all circles on 5 with radius

in I and center a point of 5 at a distance from P of less than e. The

radius of a domain D on 5 is the least number e such that if / is a

circle on 5, which is not a great circle, and the complementary domain

of / containing its center is a subset of D, the radius of / is less than

or equal to e.

The statement that the point P of continuum M is a local separating

point of M means that there is a domain R with respect to M contain-

ing P such that if C is the component of R containing P, R — P is

the sum of two mutually separated sets each intersecting C (p. 61

of reference [lO]).

Theorem 1. If G* is a subset of the boundary of a connected open set

lying in S — G*, there is a subcollection R of G which is a dense inner

limiting set in © and each of whose elements is a local separating point

of®.

Proof. This theorem is established by showing that there is a sub-

collection N of G such that for each element n of N, it is possible to

define a notion of a side of n so that n has either one or two sides. It

is then shown that, speaking roughly, those elements of G, lying

near n, lie in only one side of n, and that if there are elements of G

in each side of n near n, n is a local separating point of ©. It is next

shown that there is a subcollection R of N such that for each element

r of R, there are elements of G in each side of r near r.

Since G* does not intersect two complementary domains of any ele-

ment of G, not more than countably many elements of G have two

complementary domains. There is a subcollection N of G, no element

of which cuts 5, such that 9t is a dense inner limiting set in ®, and

such that if n is an element of N and e is a positive number, C(e, n)

is zero. This follows immediately from Lemma 2.
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Let n denote an element of N. Since n is decomposable, it is the

sum of two of its proper subcontinua, «i and n2. There is an arc a",

lying except for its end points in S — n, which intersects «i at a point

Pi not in n2 and intersects n2 at a point P2 not in n\. By Theorem 34,

p. 203 of reference [S], there are just two complementary domains,

Di and D2, of n+a", and a" is a subset of the boundary of each of

them. Since C(e, n) is zero for every positive number e, there is a

positive number e such that if g is an element of G, S(g, n) is less than

e, and A, B, C, and D are points of g such that d(A, Pi), d(B, Pi),

d(C, P2), and d(D, P2) are less than e, then there are subcontinua gi

and g2 of g, gi containing A and B and g2 containing C and D, such

that no point of gi is at a distance from P2 of less than d(P2, Wi)/2,

and no point of g2 is at a distance from Pi of less than d(P\,n2)/2.

Let E and F denote points of a" between Pi and P2 such that the

subarcs EPi and FP2 of a" have diameters less than e.

Since G* is a subset of the boundary of a connected set lying in its

complement, there do not exist a point of that complement and two

elements of G each of which separates n from that point. Therefore,

there is a positive number c such that if g is an element of G and

S(g, n) is less than c, g does not separate n from EF in 5. Suppose

there is an element g of G for which S(g, n) is less than both d(n,

arc EF)/2 and c, which has subcontinua gi and g2 which respectively

lie in Di+a" and D2+a" and are irreducible from EPX to FP2. If

gi and g2 have a common point in EPi, let /3 denote one such point.

If they do not, let /3' denote a subarc of .EPi irreducible from gx to g2.

There is an arc (3, irreducible from gi to g2, having the same end points

as /3' and not intersecting a", except in points of j3', such that the arc

PPi in which /3 is substituted for /3' has diameter less than e, and

such that if g has a point Q on an open segment of /3, then Q is a limit

point of subsets of g from both sides of p\ Let a' denote the arc a"

in which /3 is substituted for (3'. Similarly, define arcs (or a point)

y' and y for FP2 and substitute y for 7' in a' to obtain the arc a.

Let A =j3+y+gi+g2. There exist an arc from n to gi not intersecting

a+g2 and an arc from n to g2 not intersecting a+gi. Let D denote

the complementary domain of A containing EF, and AB denote the

irreducible subarc of a from A to A containing EF. By Theorem 34,

p. 203 of reference [5], n and EF lie in different complementary

domains of A.
There is an arc r\ from a point of EF to a point of n which does not

intersect g and is such that if Z is an irreducible subarc of 77 from /?

to /3 (or from 7 to 7), both complementary domains of @+Z (or

y+Z) intersect g, and any two successive components on 77 of

77 — 77- (/3+7), such that the subset of 77 between them lies on /3, abut
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on j3 from different sides, and similarly for 7. In the order from EF

to n, either jj intersects j8 before 7 or 7 before p\ Suppose n intersects

7 before /3 (the other case can be handled similarly). Let f denote the

subarc of 71 from EF to 7, and e denote the closure of the next com-

ponent on 77 of v — n- (18+7). Let £ denote the component of 77 y

intersecting f and e. £ is either a point or an arc. There are points T

and Q of g on 7 such that £ is between them, and no point of g on 7

is between them. Let V denote the first point of £ from T to Q, and

let U denote the first point of £ from Q to T. No point of f+e not

in £ is between T and Q on 7- Since e and f abut on 7 from different

sides, by Theorem 32, p. 201 of reference [S], TV and UQ abut on

e+ij+f from different sides. There is a subcontinuum h of g contain-

ing T and Q such that none of its points is at a distance from Pi of

less than d(Pi, n2)/2. If 77 intersects p\ there is a point R of 77 at a dis-

tance less than e from Pi such that the subarc of 77 from R to £P

does not intersect p\ and such that there is an arc p. from Rton which

does not intersect h + FPi. Let 77' denote 77 if it does not intersect p\

or a subarc from EF to « of the subarc of 77 from EF to 2? plus the

arc n, if 77 does intersect p\ T^and UQ abut on 77' from different sides.

By Theorem 34(2), p. 203 of reference [5], T and Q lie in different

components of S — (rj' -}-n-\- FPi). However, there is a continuum, h,

containing them that does not intersect ti'+w + PPi. This is a contra-

diction.

If there were a sequence gi, g2, • • • of continua of G converging to

n such that for each positive integer i, gi contained two subcontinua,

g\ and g2, g\ lying in Di and g? lying in D2, such that each of the

sequences g\, g\, • • ■ and g\, g\, ■ • ■ converged to a subcontinuum

of « containing Pi and P2, then since C(e, n) is zero for every positive

number e, there would be a continuum in G which has the character-

istics of that in the previous impossible supposition.

Therefore, there is a positive number d such that if g is an element

of G and S(g, n) is less than d, and gi and g2 are subcontinua of g,

neither intersecting a and each containing a point at a distance from

Pi of less than d and a point at a distance from P2 of less than d, then

either gi and g2 lie in Z>i or they lie in D2. Every element g of G for

which S(g, n) is less than d contains a subcontinuum q, not intersect-

ing a, which contains a point at a distance from Pi of less than d

and a point at a distance from P2 of less than d. If q lies in £>i, g will

be said to lie on the Di side of n; if q lies in D2, g will be said to lie on

the D2 side of n. Let Zi denote the set of all elements z of G for which

S(z, n) is less than d, and which lie on the Di side of n; and let Z2 de-

note the similar set for D2. Si and $2 are mutually separated in ®,

and if n is in both 3i and £2. n is a local separating point of ©.
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Suppose there is an uncountable subcollection M of N such that

no element of M is a local separating point of ®. For each element

m of M, let mx and m2 denote two proper subcontinua of m whose sum

is m, am denote an arc lying except for its end points in S — m, PJ*

and P^ denote the two end points of am, P? lying in mi but not m2, and

PZ lying in m2 but not mt, and Z>™ and D™ denote the complementary

domains of m+am. There is a positive number dm such that if g is

an element of G and S(g, m) is less than dm, g lies on either the D"

side of m or the D™ side of m. There is a positive number em, less than

dm, and one of the complementary domains of m+am, say Em, such

that if g is an element of G and 5'(g, m) is less than em, then g is on the

non-jEm side of m. It can be shown by an indirect argument that for

each element m of M, there is a positive number 0 such that if /

is a closed interval of positive numbers, each of which is less than 5,

there is a positive number e such that if C\ and C2 are elements of

C(Pi\ /, e) and C(P%, I, e), respectively, and g is an element of G

for which S(g, m) is less than e, then a complementary domain of

CI (m+g+ int. Ci+int. C2) lying in Zsm has in its boundary a subset of

am irreducible from Ci to C2 and a subcontinuum of m irreducible

from Ci to C2. The following statement is implied by the fact that

no element of M separates S; its form is for convenience in concluding

the statement in the next paragraph. If m is an element of M and

e is a positive number, there is a positive number 8 such that if / is a

closed interval of positive numbers each of which is less than 5, there

is a positive number e such that if Ci and C2 are elements of C(P?, I, e)

and C(P2n, I, e), respectively, and g is an element of G for which

S(g, m) is less than e, then if p, is the set of all subcontinua of m

irreducible from Ci to C2, and 7 is the set of all subcontinua of g ir-

reducible from Ci to C2, and h and k are elements of p+y, not more

than one complementary domain of Ci + C2+h + k has radius more

than e.

For each element m of M, there exist a closed number interval Im

and a positive number fm, which is less than every number in Im,

such that if G and C2 are elements of C(P?, Im,fm) and C(P2, Im,fm),

respectively, then

(1) am has only one subarc, /3m, irreducible from Ci to C2;

(2) there is a subcontinuum of m irreducible from Ci to C2 and a

complementary domain Dm of m+$m+Ci + C2 having /3m and that

subcontinuum on its boundary such that if g is an element of G for

which S(g, m) is less than fm, then no subcontinuum of g which is

irreducible from G to C2 intersects Dm; and

(3) if g is an element of G for which S(g, m) is less than fm, p is

the set of all subcontinua of m irreducible from Ci to C2, 7 is the set
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of all subcontinua of g irreducible from Ci to C2, and h and k are ele-

ments of m+7, then not more than one complementary domain of

h-\-k + Ci + C2 has radius more than half of the radius of Dm.

By repeated alternate applications of Lemma 1 and the theorern

that some point of each uncountable point set in a completely separa-

ble, metric space is a condensation point of that set, there exist a

closed number interval /, a closed number interval /, the least num-

ber of which is 3/4's of the greatest, a positive number d, and an

uncountable subcollection M' of M such that for each element m of

M', I is a subinterval of Im, d is less than fm, and the radius of Dm is

in /. There are three elements h, k, and m of M' such that if x, y,

and z are h, k, and m, then S(x, y), d(P\, P?), and d(P%, P2) are less

than d. Let G and C2 denote circles with radii in I and centers P\ and

Pa", respectively. G is in C(Pf, Ix,fx), where i is either 1 or 2 and x

is either h, k, or m. Let X, Y, and Z denote the elements of p.x, p.y,

and pz on the boundary of Dx, Dv, and D„ respectively. Suppose

that two of the arcs p\, p\, and (3m separate one of the continua X,

Y, and Z from one of the other two in 5— (G + G+hit. G+int. C2).

Then the sum of those two continua, together with G + G, has two

complementary domains, each of radius greater than the least num-

ber in /, which is greater than one-half of the radius of each of the

domains Dk, Dk, and Dm. This contradicts condition (3). Therefore,

two of the continua X, Y, and Z separate the third from Ph+Pk+Pm

in 5—(G + G+int. G+int. C2). But this contradicts condition (2)

for one of the continua h, k, or m.

Since not more than countably many elements of N fail to be local

separating points of @, if dt is the set of all points of 9t which are

local separating points of ®, dt is a dense inner limiting set in ®.

Theorem 2. If a and b are elements of G, § is an irreducible subcon-

tinuum of ® from a to b, and a is an arc in (S — H*) +a+& which is

irreducible from a to b, then H* is not a subset of the boundary of any

complementary domain of H* +a having a in its boundary.

Proof. Suppose this theorem is false. Then there exist elements a

and b of G, a subcollection H of G, and an arc a as stated in the

hypothesis of the theorem for which there is a complementary do-

main D of H*-\-ct having H*-\-a as its boundary. By Theorem 1 of

this paper and Corollary 9.21 of reference [10], there are two ele-

ments p and q of H such that C(e, p) and C(e, q) are zero for every

positive number e, and such that § — (/>+?) is the sum of two

mutually separated sets, one of which contains both a and b. Since

§ is an irreducible continuum from a to b, p is a cut point of §.

The point set p is the sum of two of its proper subcontinua pi
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and p2. Let A and B denote the end points of a on a and b, respec-

tively. There exist a point Pi of pi but not in p2 and a point P2 of p2

but not in pi. By an argument like that on p. 592 of reference [3],

there are subcontinua hiA, his, h2A, and h2B of H* such that hix is

irreducible from Pi to X, where i is either 1 or 2 and X is either A

or B, and such that Pi is not in h2A+h2s and P2 is not in hiA+hiB',

furthermore, hiA does not have any point in common with hiB+h2B

not in p. There are two mutually exclusive circles Ji and J2 with cen-

ters Pi and P2, respectively, such that the interior of Ji does not inter-

sect h2A+h2a, and the interior of J2 does not intersect hiA+hiB, and

such that there are two mutually exclusive arcs 7i and 72 irreducible

from Pi and P2, respectively, to an open segment of a, such that 71

lies, except for its points in a + int. Ju in D and does not intersect the

interior of J2, and 72 lies, except for its points in a+int. J2, in D

and does not intersect the interior of J\. Let & and C2 denote the end

points of 71 and 72, respectively, on a.

Suppose A, B, G, and C2 are in the order A&C^ on a. (The other

case can be treated similarly.) Since 71 and 72 abut on a from the same

side, AC\ and 72 abut on yi + CiC2B from different sides. Thus A and

the interior of J2 lie in different complementary domains of hiB+yi

+ CiC2B. But a subcontinuum of h2A contains A, intersects the inte-

rior of J2, and does not intersect hiB+yi + CiC2B. This is a contra-

diction.

Theorem 3. & is a continuous curve.

Proof. Suppose this theorem is false. Then there is a sequence

$1, §2, • • • of mutually exclusive subcontinua of ® converging to a

nondegenerate subcontinuum S of ©, no term of which intersects E.

There is a proper subcontinuum 3) of E which is irreducible between

two of its points, p and q, such that there exist a positive integer n

and an arc a for which H*+1+H^+2+ ■ ■ ■ intersects only one com-

plementary domain of D* and a lies, except for its end points, in that

complementary domain and is irreducible from p to q. Since G is a

continuous collection, each element of D is in the boundary of one

of the complementary domains Q' and T' of D*+a having a in their

boundaries. Therefore, all of the elements of a subcontinuum S of 35,

which is not a continuum of condensation in 3), lie in the boundary

of one of those complementary domains, say Q. Since 35 is an irre-

ducible continuum, the boundaries of Q' and T' intersect each ele-

ment of D. Therefore, there is a dense set of elements of D each con-

taining a point accessible from that one of the domains Q' and T'

which is not Q, say T. Since S is not a continuum of condensation in

35, there is an arc /3, lying in T except for its end points, which is ir-
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reducible between some two elements of E. Let 58 denote an irreduci-

ble subcontinuum of © between those two elements. That comple-

mentary domain of 2J*+j3 having /3 on its boundary and not inter-

secting a does not intersect Q. Therefore, B* is a subset of the bound-

ary of a complementary domain of 5*+/3 having /3 in its boundary.

This contradicts Theorem 2.

Theorem 4. Each subarc of ® contains uncountably many local sepa-

rating points of ©.

Proof. Suppose that a subarc ^ of ® does not contain uncountably

many local separating points of ®. There is an element of H which is

not a cut point of ® and which is not an end point of ^p. Therefore,

there is an arc in ® having only two points in common with §. Let

a and b denote those points of §, and let 8 denote the subarc of §

from a to b. No element of L contains elements of L in two of its

complementary domains. Let Z denote those elements g of G such

that for each element of L, g is in the complementary domain of that

element which contains the other elements of L. L* is a subset of Z*.

The argument may be concluded as in the proof of Theorem 3.

Theorem 5. Each nondegenerate subcontinuum of ® contains un-

countably many local separating points of ®.

Proof. Each nondegenerate subcontinuum of ® is a continuous

curve and so contains an arc, which by Theorem 4 contains uncount-

ably many local separating points of ®. A list of characterizations of

continua having this property is presented on p. 248 of reference [4].

Theorem 6. // G fills up S, ® is a dendron.

Proof. A contradiction to Theorem 2 follows immediately the

supposition that ® contains a simple closed curve. This theorem and

the next also follow easily from various results of this paper and theo-

rems proved either by Moore [6], Vietoris [8], or Whyburn [9].

Theorem 7. // G fills up 5 and none of its elements is the boundary

of three of its complementary domains, ® is an arc.

Proof. The decomposition space of a collection of elements of G

filling up a complementary domain of an element of G is connected.

Hence ® has no junction point and is an arc.

Theorem 8. For each dendron D, there is a continuous collection G of

mutually exclusive decomposable continua filling up 5 such that © is

homeomorphic to D.

Proof. This result is an immediate corollary of an unpublished
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result announced by R. D. Anderson in the Proceedings of the Inter-

national Congress (1950). An indication of an argument not depend-

ent on this result is given here.

It is sufficient to show that there exists a continuous collection G'

of mutually exclusive continua (not necessarily decomposable) filling

up a simple closed curve J plus its interior I with each element of G'

intersecting J and with ©' homeomorphic to D. Let X\, x2, • ■ ■ be a

dense collection of cut points of D including all the emanation points

of D. Proceed inductively. Let h be a continuum in J+I which is the

boundary of each of its complementary domains in /+/ and whose

complementary domains all intersect / and are in 1-1 correspondence

Pi with the complementary domains of Xi in D. For each i, let ti be a

continuum in the complementary domain of J+I—(h+t2+ • • •

-W,_i) corresponding under Tu ■ ■ ■ , P<_i to the complementary

domain of D — (xi+ ■ • • 4-x<_i) containing Xi with ti satisfying condi-

tions analogous to those imposed on t\. By employing rather obvious

further conditions on /,• with respect to h, • • • , ti-i it can be insured

that h, t2, • • ■ is a continuous collection admitting the definition of

G' as required.
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